Andrzej Sienkiewicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8869646/publications.pdf

Version: 2024-02-01

279487 288905 56 1,695 23 40 citations g-index h-index papers 60 60 60 3411 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Central nervous system and systemic oxidative stress interplay with inflammation in a bile duct ligation rat model of type C hepatic encephalopathy. Free Radical Biology and Medicine, 2022, 178, 295-307.	1.3	14
2	Solar water purification with photocatalytic nanocomposite filter based on TiO2 nanowires and carbon nanotubes. Npj Clean Water, 2022, 5, .	3.1	13
3	A Mesoionic Diselenolene Anion and the Corresponding Radical Dianion. Chemistry - A European Journal, 2022, , .	1.7	1
4	Structure and Reactivity of Polynuclear Divalent Lanthanide Disiloxanediolate Complexes. Inorganic Chemistry, 2022, 61, 7436-7447.	1.9	3
5	Kilogramâ€8cale Crystallogenesis of Halide Perovskites for Gammaâ€Rays Dose Rate Measurements. Advanced Science, 2021, 8, 2001882.	5. 6	21
6	High-Pressure Synthesis of Rare-Earth Borate-Nitrate Crystals for Second Harmonic Generation. Inorganic Chemistry, 2021, 60, 286-291.	1.9	6
7	Tuning the Ï€â€Accepting Properties of Mesoionic Carbenes: A Combined Computational and Experimental Study. Chemistry - A European Journal, 2021, 27, 11983-11988.	1.7	10
8	Hybrid halide perovskite neutron detectors. Scientific Reports, 2021, 11, 17159.	1.6	10
9	Chromophore of an Enhanced Green Fluorescent Protein Can Play a Photoprotective Role Due to Photobleaching. International Journal of Molecular Sciences, 2021, 22, 8565.	1.8	4
10	Radiation detection and energy conversion in nuclear reactor environments by hybrid photovoltaic perovskites. Energy Conversion and Management, 2020, 205, 112423.	4.4	18
11	Photocatalytic Nanowiresâ€Based Air Filter: Towards Reusable Protective Masks. Advanced Functional Materials, 2020, 30, 2004615.	7.8	65
12	Longâ€Lived Photocharges in Supramolecular Polymers of Lowâ€Bandâ€Gap Chromophores. Chemistry - A European Journal, 2020, 26, 9506-9517.	1.7	8
13	Light-induced charge transfer at the CH ₃ /TiO ₂ interface—a low-temperature photo-electron paramagnetic resonance assay. JPhys Photonics, 2020, 2, 014007.	2.2	2
14	SET processes in Lewis acid–base reactions: the tritylation of N-heterocyclic carbenes. Chemical Science, 2020, 11, 7615-7618.	3.7	35
15	Synthesis of Organic Super-Electron-Donors by Reaction of Nitrous Oxide with N-Heterocyclic Olefins. Journal of the American Chemical Society, 2019, 141, 17112-17116.	6.6	39
16	Differential Response of the Photoluminescence and Photocurrent of Polycrystalline CH ₃ NH ₃ Pbl ₃ and CH ₃ NH ₃ PbBr ₃ to the Exposure to Oxygen and Nitrogen. ACS Applied Electronic Materials, 2019, 1, 2007-2017.	2.0	11
17	Synthesis of aminyl biradicals by base-induced Csp ³ –Csp ³ coupling of cationic azo dyes. Chemical Science, 2019, 10, 5719-5724.	3.7	30
18	Pressure-induced transformation of CH ₃ NH ₃ PbI ₃ : the role of the noble-gas pressure transmitting media. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2019, 75, 361-370.	0.5	4

#	Article	IF	CITATIONS
19	Light-Emitting Electrochemical Cells of Single Crystal Hybrid Halide Perovskite with Vertically Aligned Carbon Nanotubes Contacts. ACS Photonics, 2019, 6, 967-975.	3.2	49
20	Highly Substituted Î" ³ â€1,2,3â€Triazolines: Solidâ€State Emitters with Electrofluorochromic Behavior. Chemistry - A European Journal, 2019, 25, 6718-6721.	1.7	10
21	Morphology and Photoluminescence of CH3NH3Pbl3 Deposits on Nonplanar, Strongly Curved Substrates. ACS Photonics, 2018, 5, 1476-1485.	3.2	16
22	Homo―and Heterodinuclear Iron Clathrochelate Complexes with Functional Groups in the Ligand Periphery. European Journal of Inorganic Chemistry, 2018, 2018, 3118-3125.	1.0	10
23	Photocatalytic hydrogen generation from a visible-light responsive metal–organic framework system: the impact of nickel phosphide nanoparticles. Journal of Materials Chemistry A, 2018, 6, 2476-2481.	5.2	94
24	Unusually Long-Lived Photocharges in Helical Organic Semiconductor Nanostructures. ACS Nano, 2018, 12, 9116-9125.	7.3	19
25	Three-Dimensionally Enlarged Photoelectrodes by a Protogenetic Inclusion of Vertically Aligned Carbon Nanotubes into CH ₃ NH ₃ PbBr ₃ Single Crystals. Journal of Physical Chemistry C, 2017, 121, 13549-13556.	1.5	31
26	Upconversion fluorescence imaging of HeLa cells using ROS generating SiO ₂ -coated lanthanide-doped NaYF ₄ nanoconstructs. RSC Advances, 2017, 7, 30262-30273.	1.7	27
27	A novel synthetic approach of cerium oxide nanoparticles with improved biomedical activity. Scientific Reports, 2017, 7, 4636.	1.6	84
28	Neutral Aminyl Radicals Derived from Azoimidazolium Dyes. Journal of the American Chemical Society, 2016, 138, 15126-15129.	6.6	40
29	Controlled growth of CH3NH3Pbl3 nanowires in arrays of open nanofluidic channels. Scientific Reports, 2016, 6, 19834.	1.6	81
30	Single potassium niobate nano/microsized particles as local mechano-optical Brownian probes. Nanoscale, 2016, 8, 6810-6819.	2.8	7
31	Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis. Nanoscale, 2015, 7, 15643-15656.	2.8	140
32	Iron oxides semiconductors are efficients for solar water disinfection: A comparison with photo-Fenton processes at neutral pH. Applied Catalysis B: Environmental, 2015, 166-167, 497-508.	10.8	176
33	Multi-Functional Magnetic Photoluminescent Photocatalytic Polystyrene-Based Micro- and Nano-Fibers Obtained by Electrospinning. Fibers, 2014, 2, 75-91.	1.8	7
34	Upconversion Particle as a Local Luminescent Brownian Probe: A Photonic Force Microscopy Study. ACS Photonics, 2014, 1, 1251-1257.	3.2	27
35	Loading and release of internally self-assembled emulsions embedded in a magnetic hydrogel. Applied Physics Letters, 2014, 104, 043701.	1.5	10
36	Light-responsive polymer nanoreactors: a source of reactive oxygen species on demand. Nanoscale, 2013, 5, 217-224.	2.8	45

#	Article	IF	Citations
37	Photocatalytic and phototoxic properties of TiO2-based nanofilaments: ESR and AFM assays. Nanotoxicology, 2012, 6, 813-824.	1.6	13
38	Defects and localization in chemically-derived graphene. Physical Review B, 2012, 86, .	1.1	36
39	Size dependence of the magnetic response of graphite oxide and graphene flakes – an electron spin resonance study. Physica Status Solidi (B): Basic Research, 2010, 247, 2958-2961.	0.7	35
40	Synthesis, Characterization, and Photocatalytic Activities of Nanoparticulate N, S-Codoped TiO ₂ Having Different Surface-to-Volume Ratios. Journal of Physical Chemistry C, 2010, 114, 2717-2723.	1.5	99
41	Towards electron spin resonance of mechanically exfoliated graphene. Physica Status Solidi (B): Basic Research, 2009, 246, 2558-2561.	0.7	57
42	La@C ₈₂ as a spinâ€ective filling of SWCNTs: ESR study of magnetic and photophysical properties. Physica Status Solidi (B): Basic Research, 2008, 245, 2042-2046.	0.7	8
43	Stiffness Alterations of Single Cells Induced by UV in the Presence of NanoTiO2. Environmental Science & Environmental Science	4.6	51
44	Multi-Frequency High-Field EPR Study of Iron Centers in Malarial Pigments. Journal of the American Chemical Society, 2006, 128, 4534-4535.	6.6	37
45	Spectroscopic and Photophysical Properties of a Highly Derivatized C60 Fullerol. Advanced Functional Materials, 2006, 16, 120-128.	7.8	122
46	Dielectric resonator-based resonant structure for sensitive ESR measurements at high-hydrostatic pressures. Journal of Magnetic Resonance, 2005, 177, 261-273.	1.2	25
47	Polymer phase of the tetrakis(dimethylamino)ethylene-C60organic ferromagnet. Physical Review B, 2003, 68, .	1.1	18
48	Singlet oxygen generation by C[sub 60] and C[sub 70]â€"an ESR study. AIP Conference Proceedings, 2000,	0.3	1
49	Co ²⁺ lons in ZnS _x Se _{1-x} :Co - ESR and Optical Studies. Acta Physica Polonica A, 1998, 94, 593-596.	0.2	4
50	On the Tunneling Among Shallow and Deep Centers in ZnS. Acta Physica Polonica A, 1991, 79, 251-254.	0.2	1
51	The Luminescence and EPR Characterisation of Neutron Transmutation Doped Gallium Phosphide. Acta Physica Polonica A, 1991, 79, 259-262.	0.2	0
52	High hydrostatic pressure ESR manostats. High Pressure Research, 1990, 5, 877-879.	0.4	4
53	EPR investigation of ordering effects in Hg _{1â€x} Mn _x Te. Physica Status Solidi (B): Basic Research, 1979, 91, K73.	0.7	6
54	Magnetic resonance in MnTe at high hydrostatic pressures. Physica Status Solidi A, 1978, 47, K169-K171.	1.7	6

#	Article	IF	CITATIONS
55	Spin″attice coefficients of Eu ²⁺ in CdF ₂ . Physica Status Solidi (B): Basic Research, 1975, 72, K121.	0.7	3
56	Reversible wavelength-dependent photo-bleaching in free-standing polycrystalline films of MAPbI3 monitored under the intense visible light flux., 0,,.		0