
Halvor M Halvorson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8869452/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bridging Ecological Stoichiometry and Nutritional Geometry with homeostasis concepts and integrative models of organism nutrition. Functional Ecology, 2017, 31, 286-296.	3.6	79
2	Comparing the Ecological Stoichiometry in Green and Brown Food Webs – A Review and Meta-analysis of Freshwater Food Webs. Frontiers in Microbiology, 2017, 8, 1184.	3.5	69
3	From Elements to Function: Toward Unifying Ecological Stoichiometry and Trait-Based Ecology. Frontiers in Environmental Science, 2017, 5, .	3.3	67
4	Periphytic algae decouple fungal activity from leaf litter decomposition via negative priming. Functional Ecology, 2019, 33, 188-201.	3.6	50
5	Light and dissolved phosphorus interactively affect microbial metabolism, stoichiometry and decomposition of leaf litter. Freshwater Biology, 2016, 61, 1006-1019.	2.4	41
6	A stream insect detritivore violates common assumptions of threshold elemental ratio bioenergetics models. Freshwater Science, 2015, 34, 508-518.	1.8	34
7	Dietary influences on production, stoichiometry and decomposition of particulate wastes from shredders. Freshwater Biology, 2015, 60, 466-478.	2.4	30
8	Quantity and quality limit detritivore growth: mechanisms revealed by ecological stoichiometry and coâ€limitation theory. Ecology, 2017, 98, 2995-3002.	3.2	28
9	Algal-Mediated Priming Effects on the Ecological Stoichiometry of Leaf Litter Decomposition: A Meta-Analysis. Frontiers in Earth Science, 2019, 7, .	1.8	27
10	Dietary and taxonomic controls on incorporation of microbial carbon and phosphorus by detritivorous caddisflies. Oecologia, 2016, 180, 567-579.	2.0	23
11	Observational field studies are not appropriate tests of consumer stoichiometric homeostasis. Freshwater Science, 2016, 35, 1103-1116.	1.8	19
12	Longâ€ŧerm stoichiometry and fates highlight animal egestion as nutrient repackaging, not recycling, in aquatic ecosystems. Functional Ecology, 2017, 31, 1802-1812.	3.6	19
13	Detrital nutrient content and leaf species differentially affect growth and nutritional regulation of detritivores. Oikos, 2018, 127, 1471-1481.	2.7	19
14	Light and temperature mediate algal stimulation of heterotrophic activity on decomposing leaf litter. Freshwater Biology, 2020, 65, 1210-1222.	2.4	15
15	Light and dissolved nutrients mediate recalcitrant organic matter decomposition via microbial priming in experimental streams. Freshwater Biology, 2020, 65, 1189-1199.	2.4	15
16	Filter-feeders have differential bottom-up impacts on green and brown food webs. Oecologia, 2021, 195, 187-198.	2.0	15
17	Woodstoich III: Integrating tools of nutritional geometry and ecological stoichiometry to advance nutrient budgeting and the prediction of consumerâ€driven nutrient recycling. Oikos, 2016, 125, 1539-1553.	2.7	14
18	Egestion Versus Excretion: A Meta-Analysis Examining Nutrient Release Rates and Ratios across Freshwater Fauna. Diversity, 2019, 11, 189.	1.7	13

HALVOR M HALVORSON

#	Article	IF	CITATIONS
19	Interspecific homeostatic regulation and growth across aquatic invertebrate detritivores: a test of ecological stoichiometry theory. Oecologia, 2019, 190, 229-242.	2.0	12
20	Ecological significance of autotroph–heterotroph microbial interactions in freshwaters. Freshwater Biology, 2020, 65, 1183-1188.	2.4	12
21	Global Patterns and Controls of Nutrient Immobilization on Decomposing Cellulose in Riverine Ecosystems. Global Biogeochemical Cycles, 2022, 36, .	4.9	12
22	Macroinvertebrate community patterns in relation to leafâ€associated periphyton under contrasting light and nutrient conditions in headwater streams. Freshwater Biology, 2020, 65, 1270-1287.	2.4	11
23	Functional importance and diversity of fungi during standing grass litter decomposition. Oecologia, 2021, 195, 499-512.	2.0	8
24	Brown meets green: light and nutrients alter detritivore assimilation of microbial nutrients from leaf litter. Ecology, 2021, 102, e03358.	3.2	4
25	Leaf-litter stoichiometry and microbial phosphatase activity, respiration, and decomposition as phosphorus enrichment endpoints: A laboratory experiment. Freshwater Science, 2020, 39, 665-679.	1.8	3
26	A literature synthesis resolves litter intrinsic constraints on fungal dynamics and decomposition across standing dead macrophytes. Oikos, 2021, 130, 958-968.	2.7	3
27	Algal-driven priming of cellulose decomposition along a phosphorus gradient in stream mesocosms. Freshwater Science, 2021, 40, 580-592.	1.8	1
28	Ecological Stoichiometry in Streamsâ~†. , 2021, , .		1
29	Variable stoichiometric and macronutrient responses to lizard predation in Ozark glade grasshopper communities. Oecologia, 2022, 199, 757-768.	2.0	1
30	Leaf-litter decomposition and microbial responses to light and macroinvertebrate consumer manipulations in experimental streams. Freshwater Science, 2021, 40, 340-353.	1.8	0