
Jan H J Hoeijmakers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8869192/publications.pdf Version: 2024-02-01

IAN HIHOFUMAKERS

#	Article	IF	CITATIONS
1	Genome maintenance mechanisms for preventing cancer. Nature, 2001, 411, 366-374.	27.8	3,441
2	DNA Damage, Aging, and Cancer. New England Journal of Medicine, 2009, 361, 1475-1485.	27.0	1,783
3	An Essential Role for Senescent Cells in Optimal Wound Healing through Secretion of PDGF-AA. Developmental Cell, 2014, 31, 722-733.	7.0	1,376
4	Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature, 1999, 398, 627-630.	27.8	1,317
5	Chromosomal stability and the DNA double-stranded break connection. Nature Reviews Genetics, 2001, 2, 196-206.	16.3	1,049
6	Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature, 2007, 447, 725-729.	27.8	994
7	Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging. Cell, 2017, 169, 132-147.e16.	28.9	979
8	Understanding nucleotide excision repair and its roles in cancer and ageing. Nature Reviews Molecular Cell Biology, 2014, 15, 465-481.	37.0	865
9	Cellular senescence drives age-dependent hepatic steatosis. Nature Communications, 2017, 8, 15691.	12.8	673
10	A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature, 2006, 444, 1038-1043.	27.8	601
11	Aging and Genome Maintenance: Lessons from the Mouse?. Science, 2003, 299, 1355-1359.	12.6	538
12	Premature Aging in Mice Deficient in DNA Repair and Transcription. Science, 2002, 296, 1276-1279.	12.6	509
13	The Structure-Specific Endonuclease Ercc1-Xpf Is Required To Resolve DNA Interstrand Cross-Link-Induced Double-Strand Breaks. Molecular and Cellular Biology, 2004, 24, 5776-5787.	2.3	445
14	Dysregulation of the Peroxisome Proliferator-Activated Receptor Target Genes by XPD Mutations. Molecular and Cellular Biology, 2005, 25, 6065-6076.	2.3	377
15	ERCC1/XPF Removes the $3\hat{a}\in^2$ Overhang from Uncapped Telomeres and Represses Formation of Telomeric DNA-Containing Double Minute Chromosomes. Molecular Cell, 2003, 12, 1489-1498.	9.7	349
16	Photic Induction of mPer1 and mPer2 in Cry-Deficient Mice Lacking a Biological Clock. Science, 1999, 286, 2531-2534.	12.6	348
17	The central role of DNA damage in the ageing process. Nature, 2021, 592, 695-703.	27.8	340
18	ATP-Dependent Chromatin Remodeling by the Cockayne Syndrome B DNA Repair-Transcription-Coupling Factor. Molecular and Cellular Biology, 2000, 20, 7643-7653.	2.3	334

#	Article	IF	CITATIONS
19	DNA damage and ageing: new-age ideas for an age-old problem. Nature Cell Biology, 2008, 10, 1241-1247.	10.3	325
20	A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nature Genetics, 2004, 36, 714-719.	21.4	307
21	Silencing of Unpaired Chromatin and Histone H2A Ubiquitination in Mammalian Meiosis. Molecular and Cellular Biology, 2005, 25, 1041-1053.	2.3	279
22	Fanconi Anemia (Cross)linked to DNA Repair. Cell, 2005, 123, 1191-1198.	28.9	275
23	ERCC1-XPF Endonuclease Facilitates DNA Double-Strand Break Repair. Molecular and Cellular Biology, 2008, 28, 5082-5092.	2.3	268
24	Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. Science, 2016, 351, aad4395.	12.6	265
25	Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12411-12416.	7.1	237
26	Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 clock protein. EMBO Journal, 2002, 21, 1301-1314.	7.8	236
27	MicroRNA-mediated gene silencing modulates the UV-induced DNA-damage response. EMBO Journal, 2009, 28, 2090-2099.	7.8	236
28	Rec8p, a Meiotic Recombination and Sister Chromatid Cohesion Phosphoprotein of the Rad21p Family Conserved from Fission Yeast to Humans. Molecular and Cellular Biology, 1999, 19, 3515-3528.	2.3	235
29	Age to survive: DNA damage and aging. Trends in Genetics, 2008, 24, 77-85.	6.7	230
30	A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein. Genes and Development, 2003, 17, 1630-1645.	5.9	218
31	Nuclear dynamics of RAD52 group homologous recombination proteins in response to DNA damage. EMBO Journal, 2002, 21, 2030-2037.	7.8	217
32	DNA damage triggers nucleotide excision repair-dependent monoubiquitylation of histone H2A. Genes and Development, 2006, 20, 1343-1352.	5.9	217
33	UV-sensitive syndrome protein UVSSA recruits USP7 to regulate transcription-coupled repair. Nature Genetics, 2012, 44, 598-602.	21.4	213
34	Shortâ€ŧerm dietary restriction and fasting precondition against ischemia reperfusion injury in mice. Aging Cell, 2010, 9, 40-53.	6.7	212
35	The core spliceosome as target and effector of non-canonical ATM signalling. Nature, 2015, 523, 53-58.	27.8	212
2.6	Kingtonlast DNA Disprid 1070 2 2040		2011

1.4 204

#	Article	IF	CITATIONS
37	Impaired Genome Maintenance Suppresses the Growth Hormone–Insulin-Like Growth Factor 1 Axis in Mice with Cockayne Syndrome. PLoS Biology, 2006, 5, e2.	5.6	200
38	MARK-AGE biomarkers of ageing. Mechanisms of Ageing and Development, 2015, 151, 2-12.	4.6	189
39	Powerful Skin Cancer Protection by a CPD-Photolyase Transgene. Current Biology, 2005, 15, 105-115.	3.9	188
40	Rapid Switching of TFIIH between RNA Polymerase I and II Transcription and DNA Repair In Vivo. Molecular Cell, 2002, 10, 1163-1174.	9.7	187
41	The DNA damage response to transcription stress. Nature Reviews Molecular Cell Biology, 2019, 20, 766-784.	37.0	184
42	First Reported Patient with Human ERCC1 Deficiency Has Cerebro-Oculo-Facio-Skeletal Syndrome with a Mild Defect in Nucleotide Excision Repair and Severe Developmental Failure. American Journal of Human Genetics, 2007, 80, 457-466.	6.2	182
43	Delayed and Accelerated Aging Share Common Longevity Assurance Mechanisms. PLoS Genetics, 2008, 4, e1000161.	3.5	178
44	Nuclear Genomic Instability and Aging. Annual Review of Biochemistry, 2018, 87, 295-322.	11.1	178
45	Different types of V(D)J recombination and end-joining defects in DNA double-strand break repair mutant mammalian cells. European Journal of Immunology, 2002, 32, 701.	2.9	173
46	Mouse RAD54 Affects DNA Double-Strand Break Repair and Sister Chromatid Exchange. Molecular and Cellular Biology, 2000, 20, 3147-3156.	2.3	158
47	Global Regulation of Promoter Melting in Naive Lymphocytes. Cell, 2013, 153, 988-999.	28.9	145
48	Functional <i>Ex Vivo</i> Assay to Select Homologous Recombination–Deficient Breast Tumors for PARP Inhibitor Treatment. Clinical Cancer Research, 2014, 20, 4816-4826.	7.0	144
49	Isolation and characterization of kinetoplast DNA from bloodstream form of Trypanosoma brucei Journal of Cell Biology, 1978, 76, 293-309.	5.2	140
50	Xeroderma Pigmentosum Group A Protein Loads as a Separate Factor onto DNA Lesions. Molecular and Cellular Biology, 2003, 23, 5755-5767.	2.3	140
51	Novel nuclear and mitochondrial glycosylases revealed by disruption of the mouse Nth1 gene encoding an endonuclease III homolog for repair of thymine glycols. EMBO Journal, 2002, 21, 3486-3493.	7.8	139
52	Transcriptome analysis reveals cyclobutane pyrimidine dimers as a major source of UV-induced DNA breaks. EMBO Journal, 2005, 24, 3952-3962.	7.8	139
53	Anti-tumour compounds illudin S and Irofulven induce DNA lesions ignored by global repair and exclusively processed by transcription- and replication-coupled repair pathways. DNA Repair, 2002, 1, 1027-1038.	2.8	137
54	Divide and conquer: nucleotide excision repair battles cancer and ageing. Current Opinion in Cell Biology, 2003, 15, 232-240.	5.4	136

#	Article	IF	CITATIONS
55	Reduced hematopoietic reserves in DNA interstrand crosslink repair-deficient Ercc1â^'/â^' mice. EMBO Journal, 2005, 24, 861-871.	7.8	130
56	Persistent transcription-blocking DNA lesions trigger somatic growth attenuation associated with longevity. Nature Cell Biology, 2009, 11, 604-615.	10.3	127
57	DNA damage stabilizes interaction of CSB with the transcription elongation machinery. Journal of Cell Biology, 2004, 166, 27-36.	5.2	126
58	Disruption of Mouse SNM1 Causes Increased Sensitivity to the DNA Interstrand Cross-Linking Agent Mitomycin C. Molecular and Cellular Biology, 2000, 20, 4553-4561.	2.3	125
59	Cell type-specific hypersensitivity to oxidative damage in CSB and XPA mice. DNA Repair, 2003, 2, 13-25.	2.8	125
60	The Structure of the Human ERCC1/XPF Interaction Domains Reveals a Complementary Role for the Two Proteins in Nucleotide Excision Repair. Structure, 2005, 13, 1849-1858.	3.3	116
61	Tumor slice culture system to assess drug response of primary breast cancer. BMC Cancer, 2016, 16, 78.	2.6	114
62	Translocation of Cockayne syndrome group A protein to the nuclear matrix: Possible relevance to transcription-coupled DNA repair. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 201-206.	7.1	113
63	Involvement of Global Genome Repair, Transcription Coupled Repair, and Chromatin Remodeling in UV DNA Damage Response Changes during Development. PLoS Genetics, 2010, 6, e1000941.	3.5	111
64	Priming of microglia in a DNA-repair deficient model of accelerated aging. Neurobiology of Aging, 2014, 35, 2147-2160.	3.1	111
65	Accelerated Age-Related Cognitive Decline and Neurodegeneration, Caused by Deficient DNA Repair. Journal of Neuroscience, 2011, 31, 12543-12553.	3.6	110
66	Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC. Journal of Cell Science, 2008, 121, 2850-2859.	2.0	109
67	Serum N-glycan profile shift during human ageing. Experimental Gerontology, 2010, 45, 738-743.	2.8	109
68	The Ubiquitin-Conjugating DNA Repair Enzyme HR6A Is a Maternal Factor Essential for Early Embryonic Development in Mice. Molecular and Cellular Biology, 2004, 24, 5485-5495.	2.3	104
69	A variant surface glycoprotein of Trypanosoma brucei synthesized with a C-terminal hydrophobic †tail' absent from purified glycoprotein. Nature, 1980, 288, 624-626.	27.8	100
70	Increased genomic instability is not a prerequisite for shortened lifespan in DNA repair deficient mice. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2006, 596, 22-35.	1.0	100
71	Developmental Defects and Male Sterility in Mice Lacking the Ubiquitin-Like DNA Repair Gene mHR23B. Molecular and Cellular Biology, 2002, 22, 1233-1245.	2.3	99
72	The role of DNA dependent protein kinase in synapsis of DNA ends. Nucleic Acids Research, 2003, 31, 7238-7246.	14.5	97

#	Article	IF	CITATIONS
73	DNA bending by the human damage recognition complex XPC–HR23B. DNA Repair, 2003, 2, 325-336.	2.8	96
74	Loss of HR6B Ubiquitin-Conjugating Activity Results in Damaged Synaptonemal Complex Structure and Increased Crossing-Over Frequency during the Male Meiotic Prophase. Molecular and Cellular Biology, 2003, 23, 1151-1162.	2.3	96
75	UVB radiation-induced cancer predisposition in Cockayne syndrome group A (Csa) mutant mice. DNA Repair, 2002, 1, 143-157.	2.8	95
76	Nucleotide excision repair–initiating proteins bind to oxidative DNA lesions in vivo. Journal of Cell Biology, 2012, 199, 1037-1046.	5.2	95
77	Mapping of interaction domains between human repair proteins ERCC1 and XPF. Nucleic Acids Research, 1998, 26, 4146-4152.	14.5	94
78	Genome Integrity in Aging: Human Syndromes, Mouse Models, and Therapeutic Options. Annual Review of Pharmacology and Toxicology, 2016, 56, 427-445.	9.4	94
79	Mutational analysis of the human nucleotide excision repair gene ERCC1. Nucleic Acids Research, 1996, 24, 3370-3380.	14.5	93
80	Inefficient DNA Repair Is an Aging-Related Modifier of Parkinson's Disease. Cell Reports, 2016, 15, 1866-1875.	6.4	93
81	Different Effects of CSA and CSB Deficiency on Sensitivity to Oxidative DNA Damage. Molecular and Cellular Biology, 2004, 24, 7941-7948.	2.3	90
82	The CSB Protein Actively Wraps DNA. Journal of Biological Chemistry, 2005, 280, 4722-4729.	3.4	89
83	Recruitment of the Nucleotide Excision Repair Endonuclease XPG to Sites of UV-Induced DNA Damage Depends on Functional TFIIH. Molecular and Cellular Biology, 2006, 26, 8868-8879.	2.3	88
84	Age-related motor neuron degeneration in DNA repair-deficient Ercc1 mice. Acta Neuropathologica, 2010, 120, 461-475.	7.7	86
85	Enhanced repair of cyclobutane pyrimidine dimers and improved UV resistance in photolyase transgenic mice. EMBO Journal, 2002, 21, 4719-4729.	7.8	80
86	Dynamic Interaction of TTDA with TFIIH Is Stabilized by Nucleotide Excision Repair in Living Cells. PLoS Biology, 2006, 4, e156.	5.6	79
87	Broad segmental progeroid changes in short-lived <i>Ercc1</i> ^{â^'(Δ7} mice. Pathobiology of Aging & Age Related Diseases, 2011, 1, 7219.	1.1	79
88	An Xpd mouse model for the combined xeroderma pigmentosum/Cockayne syndrome exhibiting both cancer predisposition and segmental progeria. Cancer Cell, 2006, 10, 121-132.	16.8	78
89	Nucleotide Excision Repair Disorders and the Balance Between Cancer and Aging. Cell Cycle, 2006, 5, 2886-2888.	2.6	77
90	A link between the accumulation of DNA damage and loss of multiâ€potency of human mesenchymal stromal cells. Journal of Cellular and Molecular Medicine, 2010, 14, 2729-2738.	3.6	77

#	Article	IF	CITATIONS
91	Plant homologue of human excision repair geneERCC1points to conservation of DNA repair mechanisms. Plant Journal, 1998, 13, 823-829.	5.7	73
92	UV-DDB-dependent regulation of nucleotide excision repair kinetics in living cells. DNA Repair, 2009, 8, 767-776.	2.8	71
93	Retinal Degeneration and Ionizing Radiation Hypersensitivity in a Mouse Model for Cockayne Syndrome. Molecular and Cellular Biology, 2007, 27, 1433-1441.	2.3	69
94	Analysis of mouse Rad54 expression and its implications for homologous recombination. DNA Repair, 2002, 1, 779-793.	2.8	67
95	Deficiency of nucleotide excision repair is associated with mutational signature observed in cancer. Genome Research, 2019, 29, 1067-1077.	5.5	66
96	Accelerated aging pathology in ad libitum fed XpdTTD mice is accompanied by features suggestive of caloric restriction. DNA Repair, 2005, 4, 1314-1324.	2.8	65
97	Recognition of DNA damage by XPC coincides with disruption of the XPC–RAD23 complex. Journal of Cell Biology, 2012, 196, 681-688.	5.2	65
98	<i>In vivo</i> dynamics of chromatin-associated complex formation in mammalian nucleotide excision repair. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15933-15937.	7.1	64
99	Genome maintenance mechanisms are critical for preventing cancer as well as other aging-associated diseases. Mechanisms of Ageing and Development, 2007, 128, 460-462.	4.6	64
100	Age-Related Neuronal Degeneration: Complementary Roles of Nucleotide Excision Repair and Transcription-Coupled Repair in Preventing Neuropathology. PLoS Genetics, 2011, 7, e1002405.	3.5	64
101	Relative levels of the two mammalian Rad23 homologs determine composition and stability of the xeroderma pigmentosum group C protein complex. DNA Repair, 2004, 3, 1285-1295.	2.8	63
102	Mouse Models for Xeroderma Pigmentosum Group A and Group C Show Divergent Cancer Phenotypes. Cancer Research, 2008, 68, 1347-1353.	0.9	61
103	Cell-type-specific consequences of nucleotide excision repair deficiencies: Embryonic stem cells versus fibroblasts. DNA Repair, 2008, 7, 1659-1669.	2.8	60
104	Recombination and joining: different means to the same ends. Genes and Function, 1997, 1, 165-174.	2.8	59
105	Life spanning murine gene expression profiles in relation to chronological and pathological aging in multiple organs. Aging Cell, 2013, 12, 901-909.	6.7	58
106	Comparative analysis of genome maintenance genes in naked mole rat, mouse, and human. Aging Cell, 2015, 14, 288-291.	6.7	58
107	Menopause: Genome stability as new paradigm. Maturitas, 2016, 92, 15-23.	2.4	57
108	Ageing nucleus gets out of shape. Nature, 2006, 440, 32-34.	27.8	56

7

#	Article	IF	CITATIONS
109	Aging: not all DNA damage is equal. Current Opinion in Genetics and Development, 2014, 26, 124-130.	3.3	55
110	Cell-Autonomous Progeroid Changes in Conditional Mouse Models for Repair Endonuclease XPG Deficiency. PLoS Genetics, 2014, 10, e1004686.	3.5	54
111	Adaptive Stress Response in Segmental Progeria Resembles Long-Lived Dwarfism and Calorie Restriction in Mice. PLoS Genetics, 2006, 2, e192.	3.5	53
112	HLTF and SHPRH are not essential for PCNA polyubiquitination, survival and somatic hypermutation: Existence of an alternative E3 ligase. DNA Repair, 2011, 10, 438-444.	2.8	53
113	Genetic Correction of DNA Repair-Deficient/Cancer-Prone Xeroderma Pigmentosum Group C Keratinocytes. Human Gene Therapy, 2003, 14, 983-996.	2.7	52
114	Differential Role of Basal Keratinocytes in UV-Induced Immunosuppression and Skin Cancer. Molecular and Cellular Biology, 2006, 26, 8515-8526.	2.3	52
115	<scp>DNA</scp> damage in normally and prematurely aged mice. Aging Cell, 2013, 12, 467-477.	6.7	50
116	Supplementation with Lactobacillus plantarum WCFS1 Prevents Decline of Mucus Barrier in Colon of Accelerated Aging Ercc1â²/Ĵi²7 Mice. Frontiers in Immunology, 2016, 7, 408.	4.8	49
117	Ubiquitin ligase Rad18Sc localizes to the XY body and to other chromosomal regions that are unpaired and transcriptionally silenced during male meiotic prophase. Journal of Cell Science, 2004, 117, 5023-5033.	2.0	48
118	Differentiation Driven Changes in the Dynamic Organization of Basal Transcription Initiation. PLoS Biology, 2009, 7, e1000220.	5.6	48
119	Transcription-Coupled and Global Genome Repair Differentially Influence UV-B-Induced Acute Skin Effects and Systemic Immunosuppression. Journal of Immunology, 2000, 164, 6199-6205.	0.8	47
120	MicroRNA responses and stress granule formation modulate the DNA damage response. Cell Cycle, 2009, 8, 3462-3468.	2.6	47
121	Genes controlling nucleotide excision repair in eukaryotic cells. BioEssays, 1993, 15, 249-258.	2.5	46
122	DNA damage responsive microRNAs misexpressed in human cancer modulate therapy sensitivity. Molecular Oncology, 2014, 8, 458-468.	4.6	46
123	Altered lipid metabolism in the aging kidney identified by three layered omic analysis. Aging, 2016, 8, 441-454.	3.1	46
124	Cockayne syndrome pathogenesis: Lessons from mouse models. Mechanisms of Ageing and Development, 2013, 134, 180-195.	4.6	45
125	DNA damage and transcription stress cause ATP-mediated redesign of metabolism and potentiation of anti-oxidant buffering. Nature Communications, 2019, 10, 4887.	12.8	43
126	Non-catalytic Roles for XPG with BRCA1 and BRCA2 in Homologous Recombination and Genome Stability. Molecular Cell, 2016, 61, 535-546.	9.7	42

#	Article	IF	CITATIONS
127	Bi-allelic TARS Mutations Are Associated with Brittle Hair Phenotype. American Journal of Human Genetics, 2019, 105, 434-440.	6.2	42
128	Deficiency in the DNA repair protein ERCC1 triggers a link between senescence and apoptosis in human fibroblasts and mouse skin. Aging Cell, 2020, 19, e13072.	6.7	41
129	Trichothiodystrophy causative TFIIEβ mutation affects transcription in highly differentiated tissue. Human Molecular Genetics, 2017, 26, 4689-4698.	2.9	38
130	Deletion of the Nucleotide Excision Repair Gene Ercc1 Reduces Immunoglobulin Class Switching and Alters Mutations Near Switch Recombination Junctions. Journal of Experimental Medicine, 2004, 200, 321-330.	8.5	36
131	Genome stability, progressive kidney failure and aging. Nature Genetics, 2012, 44, 836-838.	21.4	36
132	Characterization of the mouse homolog of the XPBC/ERCC-3 gene implicated in xeroderma pigmentosum and Cockayne's syndrome. Carcinogenesis, 1991, 12, 2361-2368.	2.8	33
133	Cellular Concentrations of DDB2 Regulate Dynamic Binding of DDB1 at UV-Induced DNA Damage. Molecular and Cellular Biology, 2008, 28, 7402-7413.	2.3	33
134	From competition to collaboration. Nature, 1998, 391, 335-337.	27.8	32
135	Disruption of TTDA Results in Complete Nucleotide Excision Repair Deficiency and Embryonic Lethality. PLoS Genetics, 2013, 9, e1003431.	3.5	32
136	ARDD 2020: from aging mechanisms to interventions. Aging, 2020, 12, 24484-24503.	3.1	32
137	Synaptic Proteome Changes in a DNA Repair Deficient <i>Ercc1</i> Mouse Model of Accelerated Aging. Journal of Proteome Research, 2012, 11, 1855-1867.	3.7	31
138	Rescue of Progeria in Trichothiodystrophy by Homozygous Lethal Xpd Alleles. PLoS Biology, 2006, 4, e322.	5.6	29
139	The DNA damage response: The omics era and its impact. DNA Repair, 2014, 19, 214-220.	2.8	29
140	Incisions for excision. Nature, 1994, 371, 654-655.	27.8	28
141	The Structure of the XPF-ssDNA Complex Underscores the Distinct Roles of the XPF and ERCC1 Helix- Hairpin-Helix Domains in ss/ds DNA Recognition. Structure, 2012, 20, 667-675.	3.3	28
142	Spatio-temporal Analysis of Molecular Determinants of Neuronal Degeneration in the Aging Mouse Cerebellum. Molecular and Cellular Proteomics, 2013, 12, 1350-1362.	3.8	28
143	Unlike dietary restriction, rapamycin fails to extend lifespan and reduce transcription stress in progeroid DNA repairâ€deficient mice. Aging Cell, 2021, 20, e13302.	6.7	27
144	Frontline Science: Tryptophan restriction arrests B cell development and enhances microbial diversity in WT and prematurely aging <i>Ercc1â^'(Δ7</i> mice. Journal of Leukocyte Biology, 2017, 101, 811-821.	3.3	26

#	Article	IF	CITATIONS
145	Homeostatic Imbalance between Apoptosis and Cell Renewal in the Liver of Premature Aging XpdTTD Mice. PLoS ONE, 2008, 3, e2346.	2.5	26
146	Preoperative Fasting Protects against Renal Ischemia-Reperfusion Injury in Aged and Overweight Mice. PLoS ONE, 2014, 9, e100853.	2.5	26
147	Phenotypic heterogeneity in nucleotide excision repair mutants of rodent complementation groups 1 and 4. Mutation Research DNA Repair, 1997, 383, 91-106.	3.7	25
148	Congenital DNA repair deficiency results in protection against renal ischemia reperfusion injury in mice. Aging Cell, 2009, 8, 192-200.	6.7	25
149	TTDA: Big impact of a small protein. Experimental Cell Research, 2014, 329, 61-68.	2.6	25
150	DNA damage sensitivity of SWI/SNF-deficient cells depends on TFIIH subunit p62/GTF2H1. Nature Communications, 2018, 9, 4067.	12.8	25
151	Local endothelial DNA repair deficiency causes aging-resembling endothelial-specific dysfunction. Clinical Science, 2020, 134, 727-746.	4.3	25
152	Characterization of Genes and Proteins Involved in Excision Repair of Human Cells. Journal of Cell Science, 1987, 1987, 111-125.	2.0	24
153	Extended longevity mechanisms in short-lived progeroid mice: Identification of a preservative stress response associated with successful aging. Mechanisms of Ageing and Development, 2007, 128, 58-63.	4.6	24
154	Repair characteristics and differentiation propensity of long-term cultures of epidermal keratinocytes derived from normal and NER-deficient mice. DNA Repair, 2005, 4, 1325-1336.	2.8	23
155	Deciphering the RNA landscape by RNAome sequencing. RNA Biology, 2015, 12, 30-42.	3.1	23
156	Tissue-Specific Suppression of Thyroid Hormone Signaling in Various Mouse Models of Aging. PLoS ONE, 2016, 11, e0149941.	2.5	23
157	Preâ€operative dietary restriction is feasible in liveâ€kidney donors. Clinical Transplantation, 2011, 25, 486-494.	1.6	22
158	Compression of morbidity in a progeroid mouse model through the attenuation of myostatin/activin signalling. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 662-686.	7.3	22
159	Dynamic localization of human RAD18 during the cell cycle and a functional connection with DNA double-strand break repair. DNA Repair, 2009, 8, 190-201.	2.8	21
160	Nucleotide Excision Repair and its Connection with Cancer and Ageing. , 2005, 570, 45-83.		21
161	Correction by the ERCC2 gene of UV sensitivity and repair deficiency phenotype in a subset of trichothiodystrophy cells. Carcinogenesis, 1994, 15, 1493-1498.	2.8	20
162	Human RAD18 Interacts with Ubiquitylated Chromatin Components and Facilitates RAD9 Recruitment to DNA Double Strand Breaks. PLoS ONE, 2011, 6, e23155.	2.5	20

#	Article	IF	CITATIONS
163	Meiotic functions of RAD18. Journal of Cell Science, 2011, 124, 2837-2850.	2.0	20
164	Protein instability associated with <i>AARS1</i> and <i>MARS1</i> mutations causes trichothiodystrophy. Human Molecular Genetics, 2021, 30, 1711-1720.	2.9	20
165	Aging on a different scale – chronological versus pathology-related aging. Aging, 2013, 5, 782-788.	3.1	20
166	Association of Transcription-Coupled Repair but Not Global Genome Repair with Ultraviolet-B-Induced Langerhans Cell Depletion and Local Immunosuppression. Journal of Investigative Dermatology, 2003, 121, 751-756.	0.7	19
167	The HhH domain of the human DNA repair protein XPF forms stable homodimers. Proteins: Structure, Function and Bioinformatics, 2008, 70, 1551-1563.	2.6	19
168	The Genes for Variant Antigens in Trypanosomes. American Journal of Tropical Medicine and Hygiene, 1980, 29, 1033-1036.	1.4	19
169	Whole chromosome aneuploidy in the brain of Bub1bH/Hand Ercc1â^'/Δ7mice. Human Molecular Genetics, 2016, 25, 755-765.	2.9	17
170	Glucose Supplementation Does Not Interfere With Fasting-Induced Protection Against Renal Ischemia/Reperfusion Injury in Mice. Transplantation, 2011, 92, 752-758.	1.0	16
171	Different responses to DNA damage determine ageing differences between organs. Aging Cell, 2022, 21, e13562.	6.7	16
172	Age-Related Skeletal Dynamics and Decrease in Bone Strength in DNA Repair Deficient Male Trichothiodystrophy Mice. PLoS ONE, 2012, 7, e35246.	2.5	15
173	The Cerebro-oculo-facio-skeletal Syndrome Point Mutation F231L in the ERCC1 DNA Repair Protein Causes Dissociation of the ERCC1-XPF Complex. Journal of Biological Chemistry, 2015, 290, 20541-20555.	3.4	14
174	Dietary restriction but not angiotensin II type 1 receptor blockade improves DNA damage-related vasodilator dysfunction in rapidly aging Ercc1î"/â~' mice. Clinical Science, 2017, 131, 1941-1953.	4.3	14
175	From a DNA helicase to brittle hair. Nature Genetics, 1998, 20, 106-107.	21.4	13
176	Accelerated loss of hearing and vision in the DNA-repair deficient Ercc1Î′/â^' mouse. Mechanisms of Ageing and Development, 2012, 133, 59-67.	4.6	13
177	Nutritional Preconditioning in Cancer Treatment in Relation to DNA Damage and Aging. Annual Review of Cancer Biology, 2021, 5, 161-179.	4.5	13
178	Protein and calorie restriction may improve outcomes in living kidney donors and kidney transplant recipients. Aging, 2020, 12, 12441-12467.	3.1	13
179	Dietary Restriction Modifies Certain Aspects of the Postoperative Acute Phase Response. Journal of Surgical Research, 2011, 171, 582-589.	1.6	12
180	Analysis of osteoarthritis in a mouse model of the progeroid human DNA repair syndrome trichothiodystrophy. Age, 2011, 33, 247-260.	3.0	12

Jan H J Hoeijmakers

#	Article	IF	CITATIONS
181	Attenuated XPC Expression Is Not Associated with Impaired DNA Repair in Bladder Cancer. PLoS ONE, 2015, 10, e0126029.	2.5	10
182	In vivo 5-ethynyluridine (EU) labelling detects reduced transcription in Purkinje cell degeneration mouse mutants, but can itself induce neurodegeneration. Acta Neuropathologica Communications, 2021, 9, 94.	5.2	10
183	DNA repair: two pieces of the puzzle. Nature Genetics, 1992, 1, 313-314.	21.4	8
184	Check, Check …Triple Check: Multi-Step DNA Lesion Identification by Nucleotide Excision Repair. Molecular Cell, 2015, 59, 885-886.	9.7	8
185	Effects of compound heterozygosity at the Xpd locus on cancer and ageing in mouse models. DNA Repair, 2012, 11, 874-883.	2.8	7
186	Photorepair of Either CPD or 6-4PP DNA Lesions in Basal Keratinocytes Attenuates Ultraviolet-Induced Skin Effects in Nucleotide Excision Repair Deficient Mice. Frontiers in Immunology, 2022, 13, 800606.	4.8	7
187	Pollitt syndrome patients carry mutation in TTDN1. Meta Gene, 2014, 2, 616-618.	0.6	6
188	A mRad51-GFP antimorphic allele affects homologous recombination and DNA damage sensitivity. DNA Repair, 2015, 25, 27-40.	2.8	6
189	High Preservation of CpG Cytosine Methylation Patterns at Imprinted Gene Loci in Liver and Brain of Aged Mice. PLoS ONE, 2013, 8, e73496.	2.5	4
190	Base editor repairs mutation found in the premature-ageing syndrome progeria. Nature, 2021, 589, 522-524.	27.8	2
191	Mechanisms of ageing in chronic allograft nephropathy. Journal of Organ Dysfunction, 2007, 3, 7-17.	0.3	1
192	Book Reviews Genetic Instability in Cancer. Cancer Surveys, Vol. 28. Edited by Thomas Lindahl. Cold Spring Harbor Laboratory Press, 1996. 353 pages. Price \$90.00. ISBN 0 87969 485 8 Genetical Research, 1997, 70, 175-181.	0.9	0