
José FernÃ;ndez-Trincado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8869061/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Binary Companions of Evolved Stars in APOGEE DR14: Search Method and Catalog of â^¼5000 Companions. Astronomical Journal, 2018, 156, 18.	4.7	2,267
2	The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra. Astrophysical Journal, Supplement Series, 2020, 249, 3.	7.7	826
3	The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar, and APOGEE-2 Data. Astrophysical Journal, Supplement Series, 2022, 259, 35.	7.7	405
4	The Fifteenth Data Release of the Sloan Digital Sky Surveys: First Release of MaNGA-derived Quantities, Data Visualization Tools, and Stellar Library. Astrophysical Journal, Supplement Series, 2019, 240, 23.	7.7	299
5	APOGEE Data Releases 13 and 14: Data and Analysis. Astronomical Journal, 2018, 156, 125.	4.7	220
6	The APOGEE-2 Survey of the Orion Star-forming Complex. II. Six-dimensional Structure. Astronomical Journal, 2018, 156, 84.	4.7	216
7	Homogeneous analysis of globular clusters from the APOGEE survey with the BACCHUS code – II. The Southern clusters and overview. Monthly Notices of the Royal Astronomical Society, 2020, 492, 1641-1670.	4.4	103
8	The Lazy Giants: APOGEE Abundances Reveal Low Star Formation Efficiencies in the Magellanic Clouds. Astrophysical Journal, 2020, 895, 88.	4.5	77
9	Close Binary Companions to APOGEE DR16 Stars: 20,000 Binary-star Systems Across the Color–Magnitude Diagram. Astrophysical Journal, 2020, 895, 2.	4.5	74
10	New VVV Survey Globular Cluster Candidates in the Milky Way Bulge*. Astrophysical Journal Letters, 2017, 849, L24.	8.3	65
11	APOGEE Chemical Abundance Patterns of the Massive Milky Way Satellites. Astrophysical Journal, 2021, 923, 172.	4.5	64
12	Homogeneous analysis of globular clusters from the APOGEE survey with the BACCHUS code. Astronomy and Astrophysics, 2019, 622, A191.	5.1	63
13	Kinematics of the local disk from the RAVE survey and the <i>Gaia </i> first data release. Astronomy and Astrophysics, 2017, 605, A1.	5.1	57
14	The chemical compositions of accreted and <i>inÂsitu</i> galactic globular clusters according to SDSS/APOGEE. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3363-3378.	4.4	55
15	DISCOVERY OF A METAL-POOR FIELD GIANT WITH A GLOBULAR CLUSTER SECOND-GENERATION ABUNDANCE PATTERN. Astrophysical Journal, 2016, 833, 132.	4.5	53
16	Disentangling the Galactic Halo with APOGEE. II. Chemical and Star Formation Histories for the Two Distinct Populations. Astrophysical Journal, 2018, 852, 50.	4.5	53
17	Final Targeting Strategy for the SDSS-IV APOGEE-2S Survey. Astronomical Journal, 2021, 162, 303.	4.7	46
18	The Relationship between Globular Cluster Mass, Metallicity, and Light-element Abundance Variations. Astronomical lournal, 2019, 158, 14.	4.7	45

#	Article	IF	CITATIONS
19	How many components? Quantifying the complexity of the metallicity distribution in the Milky Way bulge with APOGEE. Monthly Notices of the Royal Astronomical Society, 2020, 499, 1037-1057.	4.4	44
20	Final Targeting Strategy for the Sloan Digital Sky Survey IV Apache Point Observatory Galactic Evolution Experiment 2 North Survey. Astronomical Journal, 2021, 162, 302.	4.7	44
21	Double-lined Spectroscopic Binaries in the APOGEE DR16 and DR17 Data. Astronomical Journal, 2021, 162, 184.	4.7	40
22	The age–chemical abundance structure of the Galactic disc – II. <i>α</i> -dichotomy and thick disc formation. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2371-2384.	4.4	39
23	Chemodynamics of newly identified giants with a globular cluster like abundance patterns in the bulge, disc, and halo of the Milky Way. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2864-2880.	4.4	38
24	Identifying Sagittarius Stream Stars by Their APOGEE Chemical Abundance Signatures. Astrophysical Journal, 2019, 872, 58.	4.5	37
25	Analysis of the physical nature of 22 New VVV Survey Globular Cluster candidates in the Milky Way bulge. Monthly Notices of the Royal Astronomical Society, 2019, 487, 3140-3149.	4.4	33
26	The age–chemical abundance structure of the Galaxy I: evidence for a late-accretion event in the outer disc at z â^1⁄4 0.6. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2561-2575.	4.4	30
27	Aluminium-enriched metal-poor stars buried in the inner Galaxy. Astronomy and Astrophysics, 2020, 643, L4.	5.1	30
28	Discovery of a New Stellar Subpopulation Residing in the (Inner) Stellar Halo of the Milky Way. Astrophysical Journal Letters, 2019, 886, L8.	8.3	28
29	Exploring the Stellar Age Distribution of the Milky Way Bulge Using APOGEE. Astrophysical Journal, 2020, 901, 109.	4.5	28
30	Dynamical orbital classification of selected N-rich stars with Gaia Data Release 2 astrometry. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4113-4123.	4.4	27
31	The HST Large Programme on ω Centauri. III. Absolute Proper Motion. Astrophysical Journal, 2018, 854, 45.	4.5	25
32	VVV CL001: Likely the Most Metal-poor Surviving Globular Cluster in the Inner Galaxy. Astrophysical Journal Letters, 2021, 908, L42.	8.3	25
33	The Hercules stream as seen by APOGEE-2 South. Monthly Notices of the Royal Astronomical Society, 2018, 474, 95-101.	4.4	24
34	APOGEE spectroscopic evidence for chemical anomalies in dwarf galaxies: The case of M 54 and Sagittarius. Astronomy and Astrophysics, 2021, 648, A70.	5.1	22
35	The enigmatic globular cluster UKS 1 obscured by the bulge: <i>H</i> -band discovery of nitrogen-enhanced stars. Astronomy and Astrophysics, 2020, 643, A145.	5.1	22
36	Jurassic: A chemically anomalous structure in the Galactic halo. Astronomy and Astrophysics, 2020, 644, A83.	5.1	21

#	Article	IF	CITATIONS
37	APOGEE discovery of a chemically atypical star disrupted from NGC 6723 and captured by the Milky Way bulge. Astronomy and Astrophysics, 2021, 647, A64.	5.1	20
38	Discovery of a Large Population of Nitrogen-enhanced Stars in the Magellanic Clouds. Astrophysical Journal Letters, 2020, 903, L17.	8.3	20
39	Discovery of Tidal RR Lyrae Stars in the Bulge Globular Cluster M62 ^{â^—} . Astrophysical Journal Letters, 2018, 869, L10.	8.3	18
40	Discovery of a nitrogen-enhanced mildly metal-poor binary system: Possible evidence for pollution from an extinct AGB star. Astronomy and Astrophysics, 2019, 631, A97.	5.1	18
41	The Milky Way's bulge star formation history as constrained from its bimodal chemical abundance distribution. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3557-3570.	4.4	18
42	Stellar Rotation of T Tauri Stars in the Orion Star-forming Complex. Astrophysical Journal, 2021, 923, 177.	4.5	17
43	The metal-rich halo tail extended in z : a characterization with Gaia DR2 and APOGEE. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1462-1479.	4.4	16
44	Quantifying radial migration in the Milky Way: inefficient over short time-scales but essential to the very outer disc beyond â^¼15Âkpc. Monthly Notices of the Royal Astronomical Society, 2022, 511, 5639-5655.	4.4	16
45	The tale of the Milky Way globular cluster NGC 6362 – I. The orbit and its possible extended star debris features as revealed by Gaia DR2. Monthly Notices of the Royal Astronomical Society, 2019, 489, 4565-4573.	4.4	15
46	The Milky Way tomography with APOGEE: intrinsic density distribution and structure of mono-abundance populations. Monthly Notices of the Royal Astronomical Society, 2022, 513, 4130-4151.	4.4	15
47	Chemical Cartography with APOGEE: Mapping Disk Populations with a 2-process Model and Residual Abundances. Astrophysical Journal, Supplement Series, 2022, 260, 32.	7.7	15
48	Discovery of a new nearby globular cluster with extreme kinematics located in the extension of a halo stream. Astronomy and Astrophysics, 2021, 650, L11.	5.1	14
49	Variable stars in the VVV globular clusters. Astronomy and Astrophysics, 2021, 651, A47.	5.1	13
50	CAPOS: The bulge Cluster APOgee Survey. Astronomy and Astrophysics, 2021, 652, A158.	5.1	13
51	Galactic ArchaeoLogIcaL ExcavatiOns (GALILEO). Astronomy and Astrophysics, 2022, 663, A126.	5.1	13
52	Evidence for the Accretion of Gas in Star-forming Galaxies: High N/O Abundances in Regions of Anomalously Low Metallicity. Astrophysical Journal, 2021, 908, 183.	4.5	12
53	The Orbit of the New Milky Way Globular Cluster FSR1716Â=ÂVVV-GC05 ^{â^—} . Astrophysical Journal, 2018, 863, 78.	4.5	11
54	The search for extratidal star candidates around Galactic globular clusters NGC 2808, NGC 6266, and NGC 6397 with <i>Gaia</i> DR2 astrometry. Astronomy and Astrophysics, 2021, 645, A116.	5.1	10

#	Article	lF	CITATIONS
55	APOGEE-2S Discovery of Light- and Heavy-element Abundance Correlations in the Bulge Globular Cluster NGC 6380. Astrophysical Journal Letters, 2021, 918, L9.	8.3	9
56	The chemical properties of the Milky Way's on-bar and off-bar regions: evidence for inhomogeneous star formation history in the bulge. Monthly Notices of the Royal Astronomical Society, 2020, 500, 282-290.	4.4	9
57	APOGEE-2 Discovery of a Large Population of Relatively High-metallicity Globular Cluster Debris. Astrophysical Journal Letters, 2021, 918, L37.	8.3	7
58	Orbits of globular clusters computed with dynamical friction in the Galactic anisotropic velocity dispersion field. Monthly Notices of the Royal Astronomical Society, 2022, 510, 5945-5962.	4.4	7
59	The rotation of selected globular clusters and the differential rotation of M3 in multiple populations from the SDSS-IV APOGEE-2 survey. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1144-1151.	4.4	6
60	Stellar Parameters for the First Release of the MaSTar Library: An Empirical Approach. Astrophysical Journal, 2020, 899, 62.	4.5	6
61	Photometric Signature of Ultraharmonic Resonances in Barred Galaxies. Astrophysical Journal, 2022, 929, 112.	4.5	5
62	SDSS-IV MaNGA: Exploring the Local Scaling Relations for N/O. Astrophysical Journal, 2022, 930, 160.	4.5	5
63	SDSS-IV MaNGA: The Nature of an Off-galaxy H _α Blob—A Multiwavelength View of Offset Cooling in a Merging Galaxy Group. Astrophysical Journal, 2020, 903, 16.	4.5	4
64	Chemodynamically Characterizing the Jhelum Stellar Stream with APOGEE-2. Astrophysical Journal, 2021, 913, 39.	4.5	3
65	Chemical Tagging N-rich Field Stars with High-resolution Spectroscopy. Astrophysical Journal, 2021, 913, 23.	4.5	3
66	APOGEE-2S Mg–Al anti-correlation of the metal-poor globular cluster NGC 2298. Astronomy and Astrophysics, 2022, 662, A47.	5.1	3
67	Effect of orbital trapping by bar resonances in the local <i>U</i> – <i>V</i> velocity field. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4687-4701.	4.4	2
68	Impossible Survivors: New Star Cluster Candidates in the Galactic Bulge. Research Notes of the AAS, 2020, 4, 218.	0.7	1
69	Is TerzanÂ5 the remnant of a building block of the Galactic bulge? Evidence from APOGEE. Monthly Notices of the Royal Astronomical Society, 2022, 513, 3429-3443.	4.4	1
70	Kinematics of the Milky Way disc from the RAVE survey combined with Gaia DR1. Proceedings of the International Astronomical Union, 2017, 13, 120-123.	0.0	0