
Pingfang Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8869037/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A stress-associated protein OsSAP8 modulates gibberellic acid biosynthesis by reducing the promotive effect of transcription factor OsbZIP58 on <i>OsKO2</i> . Journal of Experimental Botany, 2022, 73, 2420-2433.	4.8	6

 $_{2}$ Genome-wide Identification and Expression Analysis of CaM/CML Gene Family in Sacred Lotus (Nelumbo) Tj ETQq0 $_{1.8}^{0.0}$ rgBT / $_{2.8}^{0.0}$ rgB

3	Editorial: Proteomics of Post-translational Modifications in Plants. Frontiers in Plant Science, 2022, 13, .	3.6	1
4	Studies on Lotus Genomics and the Contribution to Its Breeding. International Journal of Molecular Sciences, 2022, 23, 7270.	4.1	3
5	A bHLH gene NnTT8 of Nelumbo nucifera regulates anthocyanin biosynthesis. Plant Physiology and Biochemistry, 2021, 158, 518-523.	5.8	31
6	The lotus NnFTIP1 and NnFT1 regulate flowering time in Arabidopsis. Plant Science, 2021, 302, 110677.	3.6	7
7	A CONSTANS-LIKE gene of Nelumbo nucifera could promote potato tuberization. Planta, 2021, 253, 65.	3.2	11
8	Metabolomics Analyses of Cotyledon and Plumule Showing the Potential Domestic Selection in Lotus Breeding. Molecules, 2021, 26, 913.	3.8	4
9	Advances on Post-translational Modifications Involved in Seed Germination. Frontiers in Plant Science, 2021, 12, 642979.	3.6	20
10	Biased allelic expression in tissues of F1 hybrids between tropical and temperate lotus (Nelumbo) Tj ETQq0 0 0 rg	BT Overlo	ock 10 Tf 50
11	Genome-wide analysis of AP2/ERF superfamily in lotus (Nelumbo nucifera) and the association between NnADAP and rhizome morphology. BMC Genomics, 2021, 22, 171.	2.8	13
12	Genetic dissection of rhizome yield-related traits in Nelumbo nucifera through genetic linkage map construction and QTL mapping. Plant Physiology and Biochemistry, 2021, 160, 155-165.	5.8	10
13	Protein Phosphorylation Response to Abiotic Stress in Plants. Methods in Molecular Biology, 2021, 2358, 17-43.	0.9	19
14	Metabolomic Analysis on the Petal of â€ [~] Chen Xi' Rose with Light-Induced Color Changes. Plants, 2021, 10, 2065.	3.5	2
15	Comparative transcriptomic analysis provides insight into carpel petaloidy in lotus (Nelumbo) Tj ETQq1 1 0.7843	14.rgBT /C 2.0	Overlock 10
16	Improving the Genome Annotation of Rhizoctonia solani Using Proteogenomics. Current Genomics, 2021, 22, 373-383.	1.6	1
17	Quantitative ubiquitylomics approach for characterizing the dynamic change and extensive modulation of ubiquitylation in rice seed germination. Plant Journal, 2020, 101, 1430-1447.	5.7	21
18	Mutations on ent-kaurene oxidase 1 encoding gene attenuate its enzyme activity of catalyzing the reaction from ent-kaurene to ent-kaurenoic acid and lead to delayed germination in rice. PLoS Genetics, 2020, 16, e1008562.	3.5	24

#	Article	IF	CITATIONS
19	Integrated Omics Analyses Identify Key Pathways Involved in Petiole Rigidity Formation in Sacred Lotus. International Journal of Molecular Sciences, 2020, 21, 5087.	4.1	6
20	Advances on Plant Ubiquitylome—From Mechanism to Application. International Journal of Molecular Sciences, 2020, 21, 7909.	4.1	9
21	Genome-wide identification of MADS-box gene family in sacred lotus (Nelumbo nucifera) identifies a SEPALLATA homolog gene involved in floral development. BMC Plant Biology, 2020, 20, 497.	3.6	23
22	In-Depth Investigation of Low-Abundance Proteins in Matured and Filling Stages Seeds of Glycine max Employing a Combination of Protamine Sulfate Precipitation and TMT-Based Quantitative Proteomic Analysis. Cells, 2020, 9, 1517.	4.1	19
23	Mechanism of GA-mediated leaf sheath growth in rice: a proteomic approach. Plant Growth Regulation, 2020, 91, 23-36.	3.4	3
24	Proteomic analysis reveals that calcium channel blockers affect radicle protrusion during rice seed germination. Plant Growth Regulation, 2020, 90, 393-407.	3.4	9
25	The Latest Studies on Lotus (Nelumbo nucifera)-an Emerging Horticultural Model Plant. International Journal of Molecular Sciences, 2019, 20, 3680.	4.1	64
26	Proteomic analysis showing the signaling pathways involved in the rhizome enlargement process in Nelumbo nucifera. BMC Genomics, 2019, 20, 766.	2.8	18
27	The Rice Alpha-Amylase, Conserved Regulator of Seed Maturation and Germination. International Journal of Molecular Sciences, 2019, 20, 450.	4.1	96
28	Genome-Wide DNA Methylation Profiling in the Lotus (Nelumbo nucifera) Flower Showing its Contribution to the Stamen Petaloid. Plants, 2019, 8, 135.	3.5	18
29	The complexity of alternative splicing and landscape of tissue-specific expression in lotus (Nelumbo) Tj ETQq1 2019, 26, 301-311.	0.784314 3.4	rgBT /Overloo 28
30	Proteomics Study in Rice Responses and Tolerance to Salt Stress. , 2019, , 781-789.		3
31	TMT-based quantitative proteomics analysis reveals the response of tea plant (Camellia sinensis) to fluoride. Journal of Proteomics, 2018, 176, 71-81.	2.4	45
32	Label-free proteomic analysis to characterize ginger from China and Ghana. Food Chemistry, 2018, 249, 1-7.	8.2	28
33	Transcriptomic profiling of tall fescue in response to heat stress and improved thermotolerance by melatonin and 24-epibrassinolide. BMC Genomics, 2018, 19, 224.	2.8	78
34	Whole genome re-sequencing reveals evolutionary patterns of sacred lotus (<i>Nelumbo) Tj ETQq0 0 0 rgBT /O</i>	verlgck 10	Tf 50 142 Td
35	Systematic transcriptomic analysis provides insights into lotus (Nelumbo nucifera) seed development. Plant Growth Regulation, 2018, 86, 339-350.	3.4	21
36	Transcriptomic analysis identifies the key genes involved in stamen petaloid in lotus (Nelumbo) Tj ETQq0 0 0 rg	BT /Qyerlo	ck 10 Tf 50 62

#	Article	IF	CITATIONS
37	Evolutionarily conserved function of the sacred lotus (Nelumbo nucifera Gaertn.) CER2-LIKE family in very-long-chain fatty acid elongation. Planta, 2018, 248, 715-727.	3.2	10
38	Low genetic diversity and functional constraint of miRNA genes participating pollen–pistil interaction in rice. Plant Molecular Biology, 2017, 95, 89-98.	3.9	4
39	Carbonylated protein changes between active germinated embryos and quiescent embryos give insights into rice seed germination regulation. Plant Growth Regulation, 2017, 83, 335-350.	3.4	7
40	Proteomics analysis identified a DRT protein involved in arsenic resistance in Populus. Plant Cell Reports, 2017, 36, 1855-1869.	5.6	5
41	The evolution of plant microRNAs: insights from a basal eudicot sacred lotus. Plant Journal, 2017, 89, 442-457.	5.7	45
42	Chromosome Nomenclature and Cytological Characterization of Sacred Lotus. Cytogenetic and Genome Research, 2017, 153, 223-231.	1.1	12
43	iTRAQ-Based Quantitative Proteomics Analysis on Rice Anther Responding to High Temperature. International Journal of Molecular Sciences, 2017, 18, 1811.	4.1	36
44	iTRAQ-based Comparative Proteomic Analyses of Two Grapevine Cultivars in Response to Cold Stress. Current Proteomics, 2017, 14, 42-52.	0.3	7
45	Metabolomic and Proteomic Profiles Reveal the Dynamics of Primary Metabolism during Seed Development of Lotus (Nelumbo nucifera). Frontiers in Plant Science, 2016, 7, 750.	3.6	43
46	Differential Molecular Responses of Rapeseed Cotyledons to Light and Dark Reveal Metabolic Adaptations toward Autotrophy Establishment. Frontiers in Plant Science, 2016, 7, 988.	3.6	7
47	Ancient microRNA families that regulate transcription factors are preferentially preserved during plant radiation. Plant Signaling and Behavior, 2016, 11, e1261233.	2.4	3
48	A proteomic analysis of salt stress response in seedlings of two African rice cultivars. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1570-1578.	2.3	31
49	Analysis of dynamic protein carbonylation in rice embryo during germination through APâ€6WATH. Proteomics, 2016, 16, 989-1000.	2.2	29
50	Genome-Wide Analysis of the R2R3 MYB Subfamily Genes in Lotus (Nelumbo nucifera). Plant Molecular Biology Reporter, 2016, 34, 1016-1026.	1.8	16
51	Global Proteome Analyses of Lysine Acetylation and Succinylation Reveal the Widespread Involvement of both Modification in Metabolism in the Embryo of Germinating Rice Seed. Journal of Proteome Research, 2016, 15, 879-890.	3.7	119
52	ldentification of phosphorus deficiency responsive proteins in a high phosphorus acquisition soybean (Glycine max) cultivar through proteomic analysis. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 427-434.	2.3	17
53	Exploration of rice pistil responses during early post-pollination through a combined proteomic and transcriptomic analysis. Journal of Proteomics, 2016, 131, 214-226.	2.4	21
54	Two Dimensional Gel Electrophoresis-Based Plant Phosphoproteomics. Methods in Molecular Biology, 2016, 1355, 213-223.	0.9	7

#	Article	IF	CITATIONS
55	Induction and quantitative proteomic analysis of cell dedifferentiation during callus formation of lotus (Nelumbo nucifera Gaertn.spp. baijianlian). Journal of Proteomics, 2016, 131, 61-70.	2.4	25
56	Transcriptomic Analysis of the Regulation of Rhizome Formation in Temperate and Tropical Lotus (Nelumbo nucifera). Scientific Reports, 2015, 5, 13059.	3.3	101
57	LOTUS-DB: an integrative and interactive database for Nelumbo nucifera study. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav023.	3.0	18
58	Analysis of Flavonoids in Lotus (Nelumbo nucifera) Leaves and Their Antioxidant Activity Using Macroporous Resin Chromatography Coupled with LC-MS/MS and Antioxidant Biochemical Assays. Molecules, 2015, 20, 10553-10565.	3.8	100
59	RNA-Seq Uncovers SNPs and Alternative Splicing Events in Asian Lotus (Nelumbo nucifera). PLoS ONE, 2015, 10, e0125702.	2.5	24
60	Genome-Wide Dissection of the MicroRNA Expression Profile in Rice Embryo during Early Stages of Seed Germination. PLoS ONE, 2015, 10, e0145424.	2.5	28
61	Proteomics of Important Food Crops in the Asia Oceania Region: Current Status and Future Perspectives. Journal of Proteome Research, 2015, 14, 2723-2744.	3.7	16
62	Proteomic Analysis of Phosphoproteins in the Rice Nucleus During the Early Stage of Seed Germination. Journal of Proteome Research, 2015, 14, 2884-2896.	3.7	23
63	Proteomic and Epigenetic Analyses of Lotus (<i>Nelumbo nucifera</i>) Petals Between Red and White cultivars. Plant and Cell Physiology, 2015, 56, 1546-1555.	3.1	48
64	Studies on the molecular mechanisms of seed germination. Proteomics, 2015, 15, 1671-1679.	2.2	154
65	Physiological and proteomic analyses on artificially aged Brassica napus seed. Frontiers in Plant Science, 2015, 6, 112.	3.6	50
66	Phosphoproteomics in Cereals. Methods in Molecular Biology, 2015, 1306, 47-57.	0.9	1
67	Morphological and Proteomic Analysis Reveal the Role of Pistil under Pollination in Liriodendron chinense (Hemsl.) Sarg. PLoS ONE, 2014, 9, e99970.	2.5	13
68	Proteomics Advances in the Understanding of Pollen–Pistil Interactions. Proteomes, 2014, 2, 468-484.	3.5	5
69	The Mitochondrion-Located Protein OsB12D1 Enhances Flooding Tolerance during Seed Germination and Early Seedling Growth in Rice. International Journal of Molecular Sciences, 2014, 15, 13461-13481.	4.1	17
70	Analysis of phosphoproteome in rice pistil. Proteomics, 2014, 14, 2319-2334.	2.2	43
71	Quantitative Proteomics Reveals the Role of Protein Phosphorylation in Rice Embryos during Early Stages of Germination. Journal of Proteome Research, 2014, 13, 1766-1782.	3.7	63
72	Gel-Based Comparative Phosphoproteomic Analysis on Rice Embryo During Germination. Plant and Cell Physiology, 2014, 55, 1376-1394.	3.1	35

#	Article	IF	CITATIONS
73	In-Depth Proteomic Analysis of Rice Embryo Reveals its Important Roles in Seed Germination. Plant and Cell Physiology, 2014, 55, 1826-1847.	3.1	69
74	The Cysteine2/Histidine2-Type Transcription Factor <i>ZINC FINGER OF ARABIDOPSIS THALIANA6</i> Modulates Biotic and Abiotic Stress Responses by Activating Salicylic Acid-Related Genes and <i>C-REPEAT-BINDING FACTOR</i> Genes in Arabidopsis Ă. Plant Physiology, 2014, 165, 1367-1379.	4.8	152
75	Comparative Proteomic Analysis of Rice Shoots Exposed to High Arsenate. Journal of Integrative Plant Biology, 2013, 55, 965-978.	8.5	19
76	Label-Free Quantitative Proteomic Analysis of Abscisic Acid Effect in Early-Stage Soybean under Flooding. Journal of Proteome Research, 2013, 12, 4769-4784.	3.7	120
77	<scp>ORFH</scp> 79 impairs mitochondrial function via interaction with a subunit of electron transport chain complex <scp>III</scp> in <scp>H</scp> onglian cytoplasmic male sterile rice. New Phytologist, 2013, 198, 408-418.	7.3	107
78	Exploring the response of rice (Oryza sativa) leaf to gibberellins: a proteomic strategy. Rice, 2013, 6, 17.	4.0	15
79	Comparative analysis of the dynamic proteomic profiles in berry skin between red and white grapes (Vitis vinifera L.) during fruit coloration. Scientia Horticulturae, 2013, 164, 238-248.	3.6	8
80	Systematic qualitative and quantitative assessment of anthocyanins, flavones and flavonols in the petals of 108 lotus (Nelumbo nucifera) cultivars. Food Chemistry, 2013, 139, 307-312.	8.2	86
81	Proteomics and Applications to Food Science in Rice. , 2013, , 379-397.		Ο
82	Manipulation of arginase expression modulates abiotic stress tolerance in Arabidopsis: effect on arginine metabolism and ROS accumulation. Journal of Experimental Botany, 2013, 64, 1367-1379.	4.8	181
83	Application of proteomics for improving crop protection/artificial regulation. Frontiers in Plant Science, 2013, 4, 522.	3.6	24
84	Gene, protein, and network of male sterility in rice. Frontiers in Plant Science, 2013, 4, 92.	3.6	39
85	Proteomics of rice seed germination. Frontiers in Plant Science, 2013, 4, 246.	3.6	108
86	Proteome Analysis of Peroxisomes from Etiolated Arabidopsis Seedlings Identifies a Peroxisomal Protease Involved in β-Oxidation and Development Â. Plant Physiology, 2013, 163, 1518-1538.	4.8	69
87	Analysis of Proteome Profile in Germinating Soybean Seed, and Its Comparison with Rice Showing the Styles of Reserves Mobilization in Different Crops. PLoS ONE, 2013, 8, e56947.	2.5	67
88	Transcriptomic and Physiological Variations of Three Arabidopsis Ecotypes in Response to Salt Stress. PLoS ONE, 2013, 8, e69036.	2.5	45
89	Comparative proteomic analyses reveal the changes of metabolic features in soybean (Clycine max) pistils upon pollination. Sexual Plant Reproduction, 2012, 25, 281-291.	2.2	27
90	Proteomic studies of the abiotic stresses response in model moss – Physcomitrella patens. Frontiers in Plant Science, 2012, 3, 258.	3.6	24

6

#	Article	IF	CITATIONS
91	Identification of Conserved and Novel microRNAs from Liriodendron chinense Floral Tissues. PLoS ONE, 2012, 7, e44696.	2.5	15
92	Gene Expression Profile Changes in Germinating Rice. Journal of Integrative Plant Biology, 2011, 53, 835-844.	8.5	31
93	Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach. Proteomics, 2011, 11, 2693-2713.	2.2	134
94	Proteomic analysis of rice seedlings infected by <i>Sinorhizobium meliloti</i> 1021. Proteomics, 2010, 10, 1861-1874.	2.2	110
95	In-Depth Proteome Analysis of Arabidopsis Leaf Peroxisomes Combined with in Vivo Subcellular Targeting Verification Indicates Novel Metabolic and Regulatory Functions of Peroxisomes Â. Plant Physiology, 2009, 150, 125-143.	4.8	240
96	Proteomic analysis of the cold stress response in the moss, <i>Physcomitrella patens</i> . Proteomics, 2009, 9, 4529-4538.	2.2	68
97	Proteomic analysis of de-etiolated rice seedlings upon exposure to light. Proteomics, 2007, 7, 2459-2468.	2.2	40
98	Proteomic analysis of rice (<i>Oryza sativa</i>) seeds during germination. Proteomics, 2007, 7, 3358-3368.	2.2	263
99	Proteome analysis of rice uppermost internodes at the milky stage. Proteomics, 2006, 6, 3330-3338.	2.2	32
100	Comparative Analysis of the Endosperm Proteins Separated by 2-D Electrophoresis for Two Cultivars of Hybrid Rice (Oryza sativa L.). Journal of Integrative Plant Biology, 2006, 48, 1028-1033.	8.5	6