
Pingfang Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8869037/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proteomic analysis of rice (<i>Oryza sativa</i>) seeds during germination. Proteomics, 2007, 7, 3358-3368.	2.2	263
2	In-Depth Proteome Analysis of Arabidopsis Leaf Peroxisomes Combined with in Vivo Subcellular Targeting Verification Indicates Novel Metabolic and Regulatory Functions of Peroxisomes Â. Plant Physiology, 2009, 150, 125-143.	4.8	240
3	Manipulation of arginase expression modulates abiotic stress tolerance in Arabidopsis: effect on arginine metabolism and ROS accumulation. Journal of Experimental Botany, 2013, 64, 1367-1379.	4.8	181
4	Studies on the molecular mechanisms of seed germination. Proteomics, 2015, 15, 1671-1679.	2.2	154
5	The Cysteine2/Histidine2-Type Transcription Factor <i>ZINC FINGER OF ARABIDOPSIS THALIANA6</i> Modulates Biotic and Abiotic Stress Responses by Activating Salicylic Acid-Related Genes and <i>C-REPEAT-BINDING FACTOR</i> Genes in Arabidopsis A. Plant Physiology, 2014, 165, 1367-1379.	4.8	152
6	Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach. Proteomics, 2011, 11, 2693-2713.	2.2	134
7	Label-Free Quantitative Proteomic Analysis of Abscisic Acid Effect in Early-Stage Soybean under Flooding. Journal of Proteome Research, 2013, 12, 4769-4784.	3.7	120
8	Global Proteome Analyses of Lysine Acetylation and Succinylation Reveal the Widespread Involvement of both Modification in Metabolism in the Embryo of Germinating Rice Seed. Journal of Proteome Research, 2016, 15, 879-890.	3.7	119
9	Proteomic analysis of rice seedlings infected by <i>Sinorhizobium meliloti</i> 1021. Proteomics, 2010, 10, 1861-1874.	2.2	110
10	Proteomics of rice seed germination. Frontiers in Plant Science, 2013, 4, 246.	3.6	108
11	<scp>ORFH</scp> 79 impairs mitochondrial function via interaction with a subunit of electron transport chain complex <scp>III</scp> in <scp>H</scp> onglian cytoplasmic male sterile rice. New Phytologist, 2013, 198, 408-418.	7.3	107
12	Transcriptomic Analysis of the Regulation of Rhizome Formation in Temperate and Tropical Lotus (Nelumbo nucifera). Scientific Reports, 2015, 5, 13059.	3.3	101
13	Analysis of Flavonoids in Lotus (Nelumbo nucifera) Leaves and Their Antioxidant Activity Using Macroporous Resin Chromatography Coupled with LC-MS/MS and Antioxidant Biochemical Assays. Molecules, 2015, 20, 10553-10565.	3.8	100
14	The Rice Alpha-Amylase, Conserved Regulator of Seed Maturation and Germination. International Journal of Molecular Sciences, 2019, 20, 450.	4.1	96
15	Systematic qualitative and quantitative assessment of anthocyanins, flavones and flavonols in the petals of 108 lotus (Nelumbo nucifera) cultivars. Food Chemistry, 2013, 139, 307-312.	8.2	86
16	Transcriptomic profiling of tall fescue in response to heat stress and improved thermotolerance by melatonin and 24-epibrassinolide. BMC Genomics, 2018, 19, 224.	2.8	78
17	Proteome Analysis of Peroxisomes from Etiolated Arabidopsis Seedlings Identifies a Peroxisomal Protease Involved in β-Oxidation and Development Â. Plant Physiology, 2013, 163, 1518-1538.	4.8	69
18	In-Depth Proteomic Analysis of Rice Embryo Reveals its Important Roles in Seed Germination. Plant and Cell Physiology, 2014, 55, 1826-1847.	3.1	69

#	Article	IF	CITATIONS
19	Proteomic analysis of the cold stress response in the moss, <i>Physcomitrella patens</i> . Proteomics, 2009, 9, 4529-4538.	2.2	68
20	Analysis of Proteome Profile in Germinating Soybean Seed, and Its Comparison with Rice Showing the Styles of Reserves Mobilization in Different Crops. PLoS ONE, 2013, 8, e56947.	2.5	67
21	The Latest Studies on Lotus (Nelumbo nucifera)-an Emerging Horticultural Model Plant. International Journal of Molecular Sciences, 2019, 20, 3680.	4.1	64
22	Quantitative Proteomics Reveals the Role of Protein Phosphorylation in Rice Embryos during Early Stages of Germination. Journal of Proteome Research, 2014, 13, 1766-1782.	3.7	63
23	Physiological and proteomic analyses on artificially aged Brassica napus seed. Frontiers in Plant Science, 2015, 6, 112.	3.6	50
24	Proteomic and Epigenetic Analyses of Lotus (<i>Nelumbo nucifera</i>) Petals Between Red and White cultivars. Plant and Cell Physiology, 2015, 56, 1546-1555.	3.1	48
25	The evolution of plant microRNAs: insights from a basal eudicot sacred lotus. Plant Journal, 2017, 89, 442-457.	5.7	45
26	TMT-based quantitative proteomics analysis reveals the response of tea plant (Camellia sinensis) to fluoride. Journal of Proteomics, 2018, 176, 71-81.	2.4	45
27	Transcriptomic and Physiological Variations of Three Arabidopsis Ecotypes in Response to Salt Stress. PLoS ONE, 2013, 8, e69036.	2.5	45
28	Analysis of phosphoproteome in rice pistil. Proteomics, 2014, 14, 2319-2334.	2.2	43
29	Metabolomic and Proteomic Profiles Reveal the Dynamics of Primary Metabolism during Seed Development of Lotus (Nelumbo nucifera). Frontiers in Plant Science, 2016, 7, 750.	3.6	43
30	Proteomic analysis of de-etiolated rice seedlings upon exposure to light. Proteomics, 2007, 7, 2459-2468.	2.2	40
31	Gene, protein, and network of male sterility in rice. Frontiers in Plant Science, 2013, 4, 92.	3.6	39
32	Whole genome re-sequencing reveals evolutionary patterns of sacred lotus (<i>Nelumbo) Tj ETQq0 0 0 rgBT /Ov</i>	erl <u>ock</u> 10	Tf 50 222 Td
33	iTRAQ-Based Quantitative Proteomics Analysis on Rice Anther Responding to High Temperature. International Journal of Molecular Sciences, 2017, 18, 1811.	4.1	36
34	Gel-Based Comparative Phosphoproteomic Analysis on Rice Embryo During Germination. Plant and Cell Physiology, 2014, 55, 1376-1394.	3.1	35
35	Proteome analysis of rice uppermost internodes at the milky stage. Proteomics, 2006, 6, 3330-3338.	2.2	32

³⁶Gene Expression Profile Changes in Germinating Rice. Journal of Integrative Plant Biology, 2011, 53,
835-844.8.531

#	Article	IF	CITATIONS
37	A proteomic analysis of salt stress response in seedlings of two African rice cultivars. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1570-1578.	2.3	31
38	A bHLH gene NnTT8 of Nelumbo nucifera regulates anthocyanin biosynthesis. Plant Physiology and Biochemistry, 2021, 158, 518-523.	5.8	31
39	Analysis of dynamic protein carbonylation in rice embryo during germination through APâ€&WATH. Proteomics, 2016, 16, 989-1000.	2.2	29
40	Genome-Wide Dissection of the MicroRNA Expression Profile in Rice Embryo during Early Stages of Seed Germination. PLoS ONE, 2015, 10, e0145424.	2.5	28
41	Label-free proteomic analysis to characterize ginger from China and Ghana. Food Chemistry, 2018, 249, 1-7.	8.2	28
42	The complexity of alternative splicing and landscape of tissue-specific expression in lotus (Nelumbo) Tj ETQq0 0 0 2019, 26, 301-311.	rgBT /Ove 3.4	rlock 10 Tf 5 28
43	Comparative proteomic analyses reveal the changes of metabolic features in soybean (Glycine max) pistils upon pollination. Sexual Plant Reproduction, 2012, 25, 281-291.	2.2	27
44	Induction and quantitative proteomic analysis of cell dedifferentiation during callus formation of lotus (Nelumbo nucifera Gaertn.spp. baijianlian). Journal of Proteomics, 2016, 131, 61-70.	2.4	25
45	Proteomic studies of the abiotic stresses response in model moss – Physcomitrella patens. Frontiers in Plant Science, 2012, 3, 258.	3.6	24
46	Application of proteomics for improving crop protection/artificial regulation. Frontiers in Plant Science, 2013, 4, 522.	3.6	24
47	RNA-Seq Uncovers SNPs and Alternative Splicing Events in Asian Lotus (Nelumbo nucifera). PLoS ONE, 2015, 10, e0125702.	2.5	24
48	Transcriptomic analysis identifies the key genes involved in stamen petaloid in lotus (Nelumbo) Tj ETQq0 0 0 rgBT	Överlock	10 Tf 50 30
49	Mutations on ent-kaurene oxidase 1 encoding gene attenuate its enzyme activity of catalyzing the reaction from ent-kaurene to ent-kaurenoic acid and lead to delayed germination in rice. PLoS Genetics, 2020, 16, e1008562.	3.5	24
50	Proteomic Analysis of Phosphoproteins in the Rice Nucleus During the Early Stage of Seed Germination. Journal of Proteome Research, 2015, 14, 2884-2896.	3.7	23
51	Genome-wide identification of MADS-box gene family in sacred lotus (Nelumbo nucifera) identifies a SEPALLATA homolog gene involved in floral development. BMC Plant Biology, 2020, 20, 497.	3.6	23
52	Exploration of rice pistil responses during early post-pollination through a combined proteomic and transcriptomic analysis. Journal of Proteomics, 2016, 131, 214-226.	2.4	21
53	Systematic transcriptomic analysis provides insights into lotus (Nelumbo nucifera) seed development. Plant Growth Regulation, 2018, 86, 339-350.	3.4	21
54	Quantitative ubiquitylomics approach for characterizing the dynamic change and extensive modulation of ubiquitylation in rice seed germination. Plant Journal, 2020, 101, 1430-1447.	5.7	21

#	Article	IF	CITATIONS
55	Advances on Post-translational Modifications Involved in Seed Germination. Frontiers in Plant Science, 2021, 12, 642979.	3.6	20
56	Comparative Proteomic Analysis of Rice Shoots Exposed to High Arsenate. Journal of Integrative Plant Biology, 2013, 55, 965-978.	8.5	19
57	In-Depth Investigation of Low-Abundance Proteins in Matured and Filling Stages Seeds of Glycine max Employing a Combination of Protamine Sulfate Precipitation and TMT-Based Quantitative Proteomic Analysis. Cells, 2020, 9, 1517.	4.1	19
58	Protein Phosphorylation Response to Abiotic Stress in Plants. Methods in Molecular Biology, 2021, 2358, 17-43.	0.9	19
59	LOTUS-DB: an integrative and interactive database for Nelumbo nucifera study. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav023.	3.0	18
60	Proteomic analysis showing the signaling pathways involved in the rhizome enlargement process in Nelumbo nucifera. BMC Genomics, 2019, 20, 766.	2.8	18
61	Genome-Wide DNA Methylation Profiling in the Lotus (Nelumbo nucifera) Flower Showing its Contribution to the Stamen Petaloid. Plants, 2019, 8, 135.	3.5	18
62	The Mitochondrion-Located Protein OsB12D1 Enhances Flooding Tolerance during Seed Germination and Early Seedling Growth in Rice. International Journal of Molecular Sciences, 2014, 15, 13461-13481.	4.1	17
63	Identification of phosphorus deficiency responsive proteins in a high phosphorus acquisition soybean (Glycine max) cultivar through proteomic analysis. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 427-434.	2.3	17
64	Proteomics of Important Food Crops in the Asia Oceania Region: Current Status and Future Perspectives. Journal of Proteome Research, 2015, 14, 2723-2744.	3.7	16
65	Genome-Wide Analysis of the R2R3 MYB Subfamily Genes in Lotus (Nelumbo nucifera). Plant Molecular Biology Reporter, 2016, 34, 1016-1026.	1.8	16
66	Exploring the response of rice (Oryza sativa) leaf to gibberellins: a proteomic strategy. Rice, 2013, 6, 17.	4.0	15
67	Identification of Conserved and Novel microRNAs from Liriodendron chinense Floral Tissues. PLoS ONE, 2012, 7, e44696.	2.5	15
68	Morphological and Proteomic Analysis Reveal the Role of Pistil under Pollination in Liriodendron chinense (Hemsl.) Sarg. PLoS ONE, 2014, 9, e99970.	2.5	13
69	Genome-wide analysis of AP2/ERF superfamily in lotus (Nelumbo nucifera) and the association between NnADAP and rhizome morphology. BMC Genomics, 2021, 22, 171.	2.8	13
70	Chromosome Nomenclature and Cytological Characterization of Sacred Lotus. Cytogenetic and Genome Research, 2017, 153, 223-231.	1.1	12
71	A CONSTANS-LIKE gene of Nelumbo nucifera could promote potato tuberization. Planta, 2021, 253, 65.	3.2	11
72	Evolutionarily conserved function of the sacred lotus (Nelumbo nucifera Gaertn.) CER2-LIKE family in very-long-chain fatty acid elongation. Planta, 2018, 248, 715-727.	3.2	10

#	Article	IF	CITATIONS
73	Genetic dissection of rhizome yield-related traits in Nelumbo nucifera through genetic linkage map construction and QTL mapping. Plant Physiology and Biochemistry, 2021, 160, 155-165.	5.8	10
74	Advances on Plant Ubiquitylome—From Mechanism to Application. International Journal of Molecular Sciences, 2020, 21, 7909.	4.1	9
75	Proteomic analysis reveals that calcium channel blockers affect radicle protrusion during rice seed germination. Plant Growth Regulation, 2020, 90, 393-407.	3.4	9
76	Biased allelic expression in tissues of F1 hybrids between tropical and temperate lotus (Nelumbo) Tj ETQq0 0 0 r	gBT /Overl	ock 10 Tf 50
77	Comparative analysis of the dynamic proteomic profiles in berry skin between red and white grapes (Vitis vinifera L.) during fruit coloration. Scientia Horticulturae, 2013, 164, 238-248.	3.6	8
78	Differential Molecular Responses of Rapeseed Cotyledons to Light and Dark Reveal Metabolic Adaptations toward Autotrophy Establishment. Frontiers in Plant Science, 2016, 7, 988.	3.6	7
79	Two Dimensional Gel Electrophoresis-Based Plant Phosphoproteomics. Methods in Molecular Biology, 2016, 1355, 213-223.	0.9	7
80	Carbonylated protein changes between active germinated embryos and quiescent embryos give insights into rice seed germination regulation. Plant Growth Regulation, 2017, 83, 335-350.	3.4	7
81	The lotus NnFTIP1 and NnFT1 regulate flowering time in Arabidopsis. Plant Science, 2021, 302, 110677.	3.6	7
82	iTRAQ-based Comparative Proteomic Analyses of Two Grapevine Cultivars in Response to Cold Stress. Current Proteomics, 2017, 14, 42-52.	0.3	7
83	Comparative Analysis of the Endosperm Proteins Separated by 2-D Electrophoresis for Two Cultivars of Hybrid Rice (Oryza sativa L.). Journal of Integrative Plant Biology, 2006, 48, 1028-1033.	8.5	6
84	Integrated Omics Analyses Identify Key Pathways Involved in Petiole Rigidity Formation in Sacred Lotus. International Journal of Molecular Sciences, 2020, 21, 5087.	4.1	6
85	A stress-associated protein OsSAP8 modulates gibberellic acid biosynthesis by reducing the promotive effect of transcription factor OsbZIP58 on <i>OsKO2</i> . Journal of Experimental Botany, 2022, 73, 2420-2433.	4.8	6
86	Proteomics Advances in the Understanding of Pollen–Pistil Interactions. Proteomes, 2014, 2, 468-484.	3.5	5
87	Proteomics analysis identified a DRT protein involved in arsenic resistance in Populus. Plant Cell Reports, 2017, 36, 1855-1869.	5.6	5
88	Genome-wide Identification and Expression Analysis of CaM/CML Gene Family in Sacred Lotus (Nelumbo) Tj ETQ	0 0 0 rgB	T /gverlock 1

89	Low genetic diversity and functional constraint of miRNA genes participating pollen–pistil interaction in rice. Plant Molecular Biology, 2017, 95, 89-98.	3.9	4
90	Metabolomics Analyses of Cotyledon and Plumule Showing the Potential Domestic Selection in Lotus Breeding. Molecules, 2021, 26, 913.	3.8	4

6

#	Article	IF	CITATIONS
91	Ancient microRNA families that regulate transcription factors are preferentially preserved during plant radiation. Plant Signaling and Behavior, 2016, 11, e1261233.	2.4	3
92	Proteomics Study in Rice Responses and Tolerance to Salt Stress. , 2019, , 781-789.		3
93	Mechanism of GA-mediated leaf sheath growth in rice: a proteomic approach. Plant Growth Regulation, 2020, 91, 23-36.	3.4	3
94	Studies on Lotus Genomics and the Contribution to Its Breeding. International Journal of Molecular Sciences, 2022, 23, 7270.	4.1	3
95	Metabolomic Analysis on the Petal of â€ [~] Chen Xi' Rose with Light-Induced Color Changes. Plants, 2021, 10, 2065.	3.5	2
96	Phosphoproteomics in Cereals. Methods in Molecular Biology, 2015, 1306, 47-57.	0.9	1
97	Comparative transcriptomic analysis provides insight into carpel petaloidy in lotus (Nelumbo) Tj ETQq1 1 0.7843	14.rgBT 2.0	/Overlock 10
98	Improving the Genome Annotation of Rhizoctonia solani Using Proteogenomics. Current Genomics, 2021, 22, 373-383.	1.6	1
99	Editorial: Proteomics of Post-translational Modifications in Plants. Frontiers in Plant Science, 2022, 13, .	3.6	1
100	Proteomics and Applications to Food Science in Rice. , 2013, , 379-397.		0