Anibal Cuetos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8869034/publications.pdf

Version: 2024-02-01

ANIBAL CHETOS

#	Article	IF	CITATIONS
1	Multifunctional biocatalyst for conjugate reduction and reductive amination. Nature, 2022, 604, 86-91.	27.8	48
2	The Reactivity of αâ€Fluoroketones with PLP Dependent Enzymes: Transaminases as Hydrodefluorinases. ChemCatChem, 2021, 13, 3967-3972.	3.7	1
3	Asymmetric Synthesis of Primary and Secondary βâ€Fluoroâ€arylamines using Reductive Aminases from Fungi. ChemCatChem, 2020, 12, 2421-2425.	3.7	27
4	S â€Adenosyl Methionine Cofactor Modifications Enhance the Biocatalytic Repertoire of Small Molecule C â€Alkylation. Angewandte Chemie, 2019, 131, 17747-17752.	2.0	12
5	<i>S</i> â€Adenosyl Methionine Cofactor Modifications Enhance the Biocatalytic Repertoire of Small Molecule <i>C</i> â€Alkylation. Angewandte Chemie - International Edition, 2019, 58, 17583-17588.	13.8	30
6	The Broad Aryl Acid Specificity of the Amide Bond Synthetase McbA Suggests Potential for the Biocatalytic Synthesis of Amides. Angewandte Chemie - International Edition, 2018, 57, 11584-11588.	13.8	47
7	The Broad Aryl Acid Specificity of the Amide Bond Synthetase McbA Suggests Potential for the Biocatalytic Synthesis of Amides. Angewandte Chemie, 2018, 130, 11758-11762.	2.0	16
8	Catalytic Promiscuity of Transaminases: Preparation of Enantioenriched βâ€Fluoroamines by Formal Tandem Hydrodefluorination/Deamination. Angewandte Chemie, 2016, 128, 3196-3199.	2.0	19
9	Catalytic Promiscuity of Transaminases: Preparation of Enantioenriched βâ€Fluoroamines by Formal Tandem Hydrodefluorination/Deamination. Angewandte Chemie - International Edition, 2016, 55, 3144-3147.	13.8	36
10	Structural Basis for Phospholyase Activity of a Classâ€III Transaminase Homologue. ChemBioChem, 2016, 17, 2308-2311.	2.6	4
11	Expanding dynamic kinetic protocols: transaminase-catalyzed synthesis of α-substituted β-amino ester derivatives. Chemical Communications, 2013, 49, 10688.	4.1	26
12	Coupling biocatalysis and click chemistry: one-pot two-step convergent synthesis of enantioenriched 1,2,3-triazole-derived diols. Chemical Communications, 2013, 49, 2625-2627.	4.1	51
13	Access to Enantiopure αâ€Alkylâ€Î²â€hydroxy Esters through Dynamic Kinetic Resolutions Employing Purified/Overexpressed Alcohol Dehydrogenases. Advanced Synthesis and Catalysis, 2012, 354, 1743-1749.	4.3	46
14	Immobilized redox enzymatic catalysts: Baeyer–Villiger monooxygenases supported on polyphosphazenes. Journal of Molecular Catalysis B: Enzymatic, 2012, 74, 178-183.	1.8	13
15	Dynamic Kinetic Resolution of αâ€Substituted βâ€Ketoesters Catalyzed by Baeyer–Villiger Monooxygenases: Access to Enantiopure αâ€Hydroxy Esters. Angewandte Chemie - International Edition, 2011, 50, 8387-8390.	13.8	35
16	Chemo―and Stereodivergent Preparation of Terminal Epoxides and Bromohydrins through Oneâ€Pot Biocatalysed Reactions: Access to Enantiopure Five―and Sixâ€Membered Nâ€Heterocycles. Advanced Synthesis and Catalysis, 2010, 352, 1657-1661.	4.3	23
17	Polyphosphazenes as Tunable and Recyclable Supports To Immobilize Alcohol Dehydrogenases and Lipases: Synthesis, Catalytic Activity, and Recycling Efficiency. Biomacromolecules, 2010, 11, 1291-1297.	5.4	20
18	Simple and quick preparation of α-thiocyanate ketones in hydroalcoholic media. Access to 5-aryl-2-imino-1,3-oxathiolanes. Green Chemistry, 2009, 11, 452.	9.0	58