Uwe Rau

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8868968/uwe-rau-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

401 13,907 64 102 g-index

435 15,594 5 6.83 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
401	Multilayer Capacitances: How Selective Contacts Affect Capacitance Measurements of Perovskite Solar Cells 2022 , 1,		4
400	Prediction of Limits of Solar-to-Hydrogen Efficiency from Polarization Curves of the Electrochemical Cells. <i>Solar Rrl</i> , 2022 , 6, 2100783	7.1	1
399	Quantifying the Absorption Onset in the Quantum Efficiency of Emerging Photovoltaic Devices. <i>Advanced Energy Materials</i> , 2021 , 11, 2100022	21.8	20
398	Interface Optimization via Fullerene Blends Enables Open-Circuit Voltages of 1.35 (V) in CH3NH3Pb (10.8Br0.2)3 Solar Cells. <i>Advanced Energy Materials</i> , 2021 , 11, 2003386	21.8	28
397	Quantum Transport across Amorphous-Crystalline Interfaces in Tunnel Oxide Passivated Contact Solar Cells: Direct versus Defect-Assisted Tunneling. <i>Chinese Physics Letters</i> , 2021 , 38, 036301	1.8	1
396	Understanding Transient Photoluminescence in Halide Perovskite Layer Stacks and Solar Cells. <i>Advanced Energy Materials</i> , 2021 , 11, 2003489	21.8	44
395	A silicon carbide-based highly transparent passivating contact for crystalline silicon solar cells approaching efficiencies of 24%. <i>Nature Energy</i> , 2021 , 6, 529-537	62.3	29
394	Transparent-conductive-oxide-free front contacts for high-efficiency silicon heterojunction solar cells. <i>Joule</i> , 2021 , 5, 1535-1547	27.8	9
393	Device Performance of Emerging Photovoltaic Materials (Version 1). <i>Advanced Energy Materials</i> , 2021 , 11, 2002774	21.8	56
392	Low-resistivity p-type a-Si:H/AZO hole contact in high-efficiency silicon heterojunction solar cells. <i>Applied Surface Science</i> , 2021 , 542, 148749	6.7	8
391	Influence of Oxygen on Sputtered Titanium-Doped Indium Oxide Thin Films and Their Application in Silicon Heterojunction Solar Cells. <i>Solar Rrl</i> , 2021 , 5, 2000501	7.1	6
390	High-quality amorphous silicon thin films for tunnel oxide passivating contacts deposited at over 150 nm/min. <i>Progress in Photovoltaics: Research and Applications</i> , 2021 , 29, 16-23	6.8	2
389	Defect tolerant device geometries for lead-halide perovskites. <i>Materials Advances</i> , 2021 , 2, 3655-3670	3.3	6
388	Design of deterministic light-trapping structures for thin silicon heterojunction solar cells. <i>Optics Express</i> , 2021 , 29, 7410-7417	3.3	0
387	Improved Infrared Light Management with Transparent Conductive Oxide/Amorphous Silicon Back Reflector in High-Efficiency Silicon Heterojunction Solar Cells. <i>Solar Rrl</i> , 2021 , 5, 2000576	7.1	6
386	Reply to Ideal solar cell efficiencies [INature Photonics, 2021, 15, 165-166]	33.9	4
385	Function Analysis of the Phosphine Gas Flow for n-Type Nanocrystalline Silicon Oxide Layer in Silicon Heterojunction Solar Cells. <i>ACS Applied Energy Materials</i> , 2021 , 4, 7544-7551	6.1	1

(2019-2021)

384	Storage batteries in photovoltaic lectrochemical device for solar hydrogen production. <i>Journal of Power Sources</i> , 2021 , 509, 230367	8.9	4
383	Phosphorus Catalytic Doping on Intrinsic Silicon Thin Films for the Application in Silicon Heterojunction Solar Cells. <i>ACS Applied Materials & Discrete Section</i> , 12, 56615-56621	9.5	2
382	From room to roof: How feasible is direct coupling of solar-battery power unit under variable irradiance?. <i>Solar Energy</i> , 2020 , 206, 732-740	6.8	6
381	Development of Conductive SiC:H as a New Hydrogenation Technique for Tunnel Oxide Passivating Contacts. <i>ACS Applied Materials & Development (Section 2008)</i> 12, 29986-29992	9.5	1
380	A Bias-Free, Stand-Alone, and Scalable Photovoltaic Electrochemical Device for Solar Hydrogen Production. <i>Advanced Sustainable Systems</i> , 2020 , 4, 2000070	5.9	10
379	Effect of reabsorption and photon recycling on photoluminescence spectra and transients in lead-halide perovskite crystals. <i>JPhys Materials</i> , 2020 , 3, 025003	4.2	9
378	Impact of Laser Treatment on Hydrogenated Amorphous Silicon Properties. <i>Advanced Engineering Materials</i> , 2020 , 22, 1901437	3.5	1
377	Front contact optimization for rear-junction SHJ solar cells with ultra-thin n-type nanocrystalline silicon oxide. <i>Solar Energy Materials and Solar Cells</i> , 2020 , 209, 110471	6.4	19
376	Transparent silicon carbide/tunnel SiO2 passivation for c-Si solar cell front side: Enabling Jsc > 42 mA/cm2 and iVoc of 742 mV. <i>Progress in Photovoltaics: Research and Applications</i> , 2020 , 28, 321-327	6.8	12
375	What is a deep defect? Combining Shockley-Read-Hall statistics with multiphonon recombination theory. <i>Physical Review Materials</i> , 2020 , 4,	3.2	21
374	How solar cell efficiency is governed by the Pproduct. <i>Physical Review Research</i> , 2020 , 2,	3.9	10
373	How to Report Record Open-Circuit Voltages in Lead-Halide Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2020 , 10, 1902573	21.8	94
372	Optimization of Transparent Passivating Contact for Crystalline Silicon Solar Cells. <i>IEEE Journal of Photovoltaics</i> , 2020 , 10, 46-53	3.7	11
371	Efficient Area Matched Converter Aided Solar Charging of Lithium Ion Batteries Using High Voltage Perovskite Solar Cells. <i>ACS Applied Energy Materials</i> , 2020 , 3, 431-439	6.1	15
370	Luminescence Analysis of Charge-Carrier Separation and Internal Series-Resistance Losses in Cu(In,Ga)Se2 Solar Cells. <i>Physical Review Applied</i> , 2020 , 14,	4.3	5
369	Bifunctional CoFeVOx Catalyst for Solar Water Splitting by using Multijunction and Heterojunction Silicon Solar Cells. <i>Advanced Materials Technologies</i> , 2020 , 5, 2000592	6.8	6
368	Influence of Room Temperature Sputtered Al-Doped Zinc Oxide on Passivation Quality in Silicon Heterojunction Solar Cells. <i>IEEE Journal of Photovoltaics</i> , 2019 , 9, 1485-1491	3.7	9
367	Solar hydrogen production: a bottom-up analysis of different photovoltaic lectrolysis pathways. Sustainable Energy and Fuels, 2019, 3, 801-813	5.8	24

366	Poly-Si/SiOx/c-Si passivating contact with 738 mV implied open circuit voltage fabricated by hot-wire chemical vapor deposition. <i>Applied Physics Letters</i> , 2019 , 114, 153901	3.4	13
365	In Situ-Doped Silicon Thin Films for Passivating Contacts by Hot-Wire Chemical Vapor Deposition with a High Deposition Rate of 42 nm/min. <i>ACS Applied Materials & Deposition Rate of 42 nm/min. ACS Applied Mater</i>	.9 § .5	4
364	Charge Carrier Collection and Contact Selectivity in Solar Cells. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1900252	4.6	22
363	Geometrical Light Trapping in Thin c-Si Solar Cells beyond Lambertian Limit 2019 ,		1
362	Open-Circuit Voltages Exceeding 1.26 V in Planar Methylammonium Lead Iodide Perovskite Solar Cells. <i>ACS Energy Letters</i> , 2019 , 4, 110-117	20.1	216
361	Application of Raman spectroscopy for depth-dependent evaluation of the hydrogen concentration of amorphous silicon. <i>Thin Solid Films</i> , 2018 , 653, 223-228	2.2	7
360	Quantitative analysis of the transient photoluminescence of CH3NH3PbI3/PC61BM heterojunctions by numerical simulations. <i>Sustainable Energy and Fuels</i> , 2018 , 2, 1027-1034	5.8	61
359	Wet-Chemical Preparation of Silicon Tunnel Oxides for Transparent Passivated Contacts in Crystalline Silicon Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 14259-14263	9.5	22
358	. IEEE Journal of Photovoltaics, 2018, 8, 272-277	3.7	4
357	Impact of Small Phonon Energies on the Charge-Carrier Lifetimes in Metal-Halide Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 939-946	6.4	66
356	What Makes a Good Solar Cell?. Advanced Energy Materials, 2018, 8, 1703385	21.8	104
355	Optical design of spectrally selective interlayers for perovskite/silicon heterojunction tandem solar cells. <i>Optics Express</i> , 2018 , 26, A750-A760	3.3	22
354	Statistics of the Auger Recombination of Electrons and Holes via Defect Levels in the Band Gap-Application to Lead-Halide Perovskites. <i>ACS Omega</i> , 2018 , 3, 8009-8016	3.9	34
353	Linking structural properties with functionality in solar cell materials Ithe effective mass and effective density of states. <i>Sustainable Energy and Fuels</i> , 2018 , 2, 1550-1560	5.8	11
352	Development of a Transparent Passivated Contact as a Front Side Contact for Silicon Heterojunction Solar Cells 2018 ,		5
351	How Contact Layers Control Shunting Losses from Pinholes in Thin-Film Solar Cells. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 27263-27272	3.8	14
350	Application of Room Temperature Sputtered Al-doped Zinc Oxide in Silicon Heterojunction Solar Cells 2018 ,		1
349	Cu(In,Ga)Se2 Thin-Film Solar Cells 2018 , 371-418		1

(2016-2017)

348	Wide gap microcrystalline silicon carbide emitter for amorphous silicon oxide passivated heterojunction solar cells. <i>Japanese Journal of Applied Physics</i> , 2017 , 56, 022302	1.4	7
347	Photovoltaics: Nanoengineered Materials and Their Functionality in Solar Cells 2017 , 181-206		1
346	Decreasing Radiative Recombination Coefficients via an Indirect Band Gap in Lead Halide Perovskites. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 1265-1271	6.4	47
345	Bandgap imaging in Cu(In,Ga)Se2 photovoltaic modules by electroluminescence. <i>Progress in Photovoltaics: Research and Applications</i> , 2017 , 25, 184-191	6.8	3
344	Manipulating the Net Radiative Recombination Rate in Lead Halide Perovskite Films by Modification of Light Outcoupling. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 5084-5090	6.4	42
343	Selection Metric for Photovoltaic Materials Screening Based on Detailed-Balance Analysis. <i>Physical Review Applied</i> , 2017 , 8,	4.3	41
342	Compatibility study towards monolithic self-charging power unit based on all-solid thin-film solar module and battery. <i>Journal of Power Sources</i> , 2017 , 365, 303-307	8.9	12
341	Performance stability of photovoltaic modules in different climates. <i>Progress in Photovoltaics:</i> Research and Applications, 2017 , 25, 968-981	6.8	19
340	Approaching Solar-Grade a-Si:H for Photovoltaic Applications via Atmospheric Pressure CVD Using a Trisilane-Derived Liquid Precursor. <i>Solar Rrl</i> , 2017 , 1, 1700030	7.1	4
339	Efficiency Potential of Photovoltaic Materials and Devices Unveiled by Detailed-Balance Analysis.	12	154
	Physical Review Applied, 2017 , 7,	4.3	±3 4
338	Microscopic Perspective on Photovoltaic Reciprocity in Ultrathin Solar Cells. <i>Physical Review Letters</i> , 2017 , 118, 247702	7.4	21
338 337	Microscopic Perspective on Photovoltaic Reciprocity in Ultrathin Solar Cells. <i>Physical Review Letters</i> ,		
	Microscopic Perspective on Photovoltaic Reciprocity in Ultrathin Solar Cells. <i>Physical Review Letters</i> , 2017 , 118, 247702 Illumination intensity and spectrum-dependent performance of thin-film silicon single and	7.4	21
337	Microscopic Perspective on Photovoltaic Reciprocity in Ultrathin Solar Cells. <i>Physical Review Letters</i> , 2017 , 118, 247702 Illumination intensity and spectrum-dependent performance of thin-film silicon single and multijunction solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2017 , 159, 427-434 Understanding the energy yield of photovoltaic modules in different climates by linear performance loss analysis of the module performance ratio. <i>IET Renewable Power Generation</i> , 2017 ,	7·4 6.4	21
337	Microscopic Perspective on Photovoltaic Reciprocity in Ultrathin Solar Cells. <i>Physical Review Letters</i> , 2017 , 118, 247702 Illumination intensity and spectrum-dependent performance of thin-film silicon single and multijunction solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2017 , 159, 427-434 Understanding the energy yield of photovoltaic modules in different climates by linear performance loss analysis of the module performance ratio. <i>IET Renewable Power Generation</i> , 2017 , 11, 558-565 Light-induced degradation of adapted quadruple junction thin film silicon solar cells for	7·4 6.4 2.9	21 22 25
337 336 335	Microscopic Perspective on Photovoltaic Reciprocity in Ultrathin Solar Cells. <i>Physical Review Letters</i> , 2017 , 118, 247702 Illumination intensity and spectrum-dependent performance of thin-film silicon single and multijunction solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2017 , 159, 427-434 Understanding the energy yield of photovoltaic modules in different climates by linear performance loss analysis of the module performance ratio. <i>IET Renewable Power Generation</i> , 2017 , 11, 558-565 Light-induced degradation of adapted quadruple junction thin film silicon solar cells for photoelectrochemical water splitting. <i>Solar Energy Materials and Solar Cells</i> , 2016 , 145, 142-147 Field Emission at Grain Boundaries: Modeling the Conductivity in Highly Doped Polycrystalline	7.4 6.4 2.9	21 22 25 26
337336335334	Microscopic Perspective on Photovoltaic Reciprocity in Ultrathin Solar Cells. <i>Physical Review Letters</i> , 2017 , 118, 247702 Illumination intensity and spectrum-dependent performance of thin-film silicon single and multijunction solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2017 , 159, 427-434 Understanding the energy yield of photovoltaic modules in different climates by linear performance loss analysis of the module performance ratio. <i>IET Renewable Power Generation</i> , 2017 , 11, 558-565 Light-induced degradation of adapted quadruple junction thin film silicon solar cells for photoelectrochemical water splitting. <i>Solar Energy Materials and Solar Cells</i> , 2016 , 145, 142-147 Field Emission at Grain Boundaries: Modeling the Conductivity in Highly Doped Polycrystalline Semiconductors. <i>Physical Review Applied</i> , 2016 , 5,	7.4 6.4 2.9	21 22 25 26 20

330	Photoluminescence Analysis of Thin-Film Solar Cells 2016 , 275-297		16
329	Scanning Probe Microscopy on Inorganic Thin Films for Solar Cells 2016 , 343-369		
328	Electron Microscopy on Thin Films for Solar Cells 2016 , 371-420		3
327	Soft X-ray and Electron Spectroscopy: A Unique T ool Chest t to Characterize the Chemical and Electronic Properties of Surfaces and Interfaces 2016 , 501-522		1
326	Fundamental Electrical Characterization of Thin-Film Solar Cells 2016 , 41-69		3
325	Hydrogen Effusion Experiments 2016 , 569-595		6
324	One-Dimensional Electro-Optical Simulations of Thin-Film Solar Cells 2016 , 633-657		2
323	Two- and Three-Dimensional Electronic Modeling of Thin-Film Solar Cells 2016 , 659-674		
322	Electroluminescence Analysis of Solar Cells and Solar Modules 2016 , 71-92		3
321	Capacitance Spectroscopy of Thin-Film Solar Cells 2016 , 93-119		4
320	Transient Optoelectronic Characterization of Thin-FilmSolar Cells 2016 , 147-162		2
319	Reciprocity between Charge Injection and Extraction and Its Influence on the Interpretation of Electroluminescence Spectra in Organic Solar Cells. <i>Physical Review Applied</i> , 2016 , 5,	4.3	30
318	Post passivation light trapping back contacts for silicon heterojunction solar cells. <i>Nanoscale</i> , 2016 , 8, 18726-18733	7.7	4
317	Upscaling of integrated photoelectrochemical water-splitting devices to large areas. <i>Nature Communications</i> , 2016 , 7, 12681	17.4	76
316	Beyond Bulk Lifetimes: Insights into Lead Halide Perovskite Films from Time-Resolved Photoluminescence. <i>Physical Review Applied</i> , 2016 , 6,	4.3	144
315	Pronounced Surface Band Bending of Thin-Film Silicon Revealed by Modeling Core Levels Probed with Hard X-rays. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 17685-93	9.5	4
314	Photoelectrochemical application of thin-film silicon triple-junction solar cell in batteries. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2016 , 213, 1926-1931	1.6	11
313	Multijunction Si photocathodes with tunable photovoltages from 2.0 V to 2.8 V for light induced water splitting. <i>Energy and Environmental Science</i> , 2016 , 9, 145-154	35.4	107

(2015-2016)

312	Influence of the operating temperature on the performance of silicon based photoelectrochemical devices for water splitting. <i>Materials Science in Semiconductor Processing</i> , 2016 , 42, 142-146	4.3	17	
311	Prototyping of nanophotonic grating back contacts for light trapping in planar silicon solar cells. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2016 , 213, 1949-1954	1.6	2	
310	Modeling and practical realization of thin film silicon-based integrated solar water splitting devices. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2016 , 213, 1738-1746	1.6	18	
309	Mechanism for crystalline Si surface passivation by the combination of SiO2 tunnel oxide and	2.5	6	
308	Analysis of Cu(In,Ga)Se2 thin-film modules by electro-modulated luminescence. <i>Journal of Applied Physics</i> , 2016 , 119, 095704	2.5	7	
307	Detailed balance analysis of photovoltaic materials and devices 2016 ,		1	
306	Imaging photocurrent collection losses in solar cells. <i>Applied Physics Letters</i> , 2016 , 109, 223502	3.4	7	
305	Photon Tunneling in Tandem Solar Cells With Intermediate Reflector. <i>IEEE Journal of Photovoltaics</i> , 2016 , 6, 597-603	3.7	3	
304	Impact of Photon Recycling on the Open-Circuit Voltage of Metal Halide Perovskite Solar Cells. <i>ACS Energy Letters</i> , 2016 , 1, 731-739	20.1	96	
303	Effects of Thermochemical Treatment on CuSbS2 Photovoltaic Absorber Quality and Solar Cell Reproducibility. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 18377-18385	3.8	51	
302	Extracting Information about the Electronic Quality of Organic Solar-Cell Absorbers from Fill Factor and Thickness. <i>Physical Review Applied</i> , 2016 , 6,	4.3	44	
301	Development towards cell-to-cell monolithic integration of a thin-film solar cell and lithium-ion accumulator. <i>Journal of Power Sources</i> , 2016 , 327, 340-344	8.9	25	
300	Advanced large area characterization of thin-film solar modules by electroluminescence and thermography imaging techniques. <i>Solar Energy Materials and Solar Cells</i> , 2015 , 135, 35-42	6.4	38	
299	Analysis of the light-induced degradation of differently matched tandem solar cells with and without an intermediate reflector using the Power Matching Method. <i>Solar Energy Materials and Solar Cells</i> , 2015 , 143, 1-8	6.4	4	
298	Direct analysis of the current density vs. voltage curves of a CdTe module during outdoor exposure. <i>Solar Energy</i> , 2015 , 113, 88-100	6.8	4	
297	Application and modeling of an integrated amorphous silicon tandem based device for solar water splitting. <i>Solar Energy Materials and Solar Cells</i> , 2015 , 140, 275-280	6.4	44	
296	Solar water splitting with earth-abundant materials using amorphous silicon photocathodes and Al/Ni contacts as hydrogen evolution catalyst. <i>Chemical Physics Letters</i> , 2015 , 638, 25-30	2.5	23	
295	Nanoscale Investigation of Polarization-Dependent Light Coupling to Individual Waveguide Modes in Nanophotonic Thin-Film Solar Cells. <i>IEEE Journal of Photovoltaics</i> , 2015 , 5, 1523-1527	3.7	3	

294	Electric properties and carrier multiplication in breakdown sites in multi-crystalline silicon solar cells. <i>Journal of Applied Physics</i> , 2015 , 117, 205703	2.5	1
293	Electrical Repair of Incomplete Back Contact Insulation (P1) in Cu(In,Ga)Se \$_2\$ Photovoltaic Thin-Film Modules. <i>IEEE Journal of Photovoltaics</i> , 2015 , 5, 1197-1205	3.7	1
292	Coupling Incident Light to Guided Modes in Thin-Film Tandem Solar Cells With Intermediate Reflector. <i>IEEE Journal of Photovoltaics</i> , 2015 , 5, 3-8	3.7	1
291	Preparation and measurement of highly efficient a-Si:H single junction solar cells and the advantages of Ē-SiOx:H n-layers. <i>Progress in Photovoltaics: Research and Applications</i> , 2015 , 23, 939-948	6.8	37
29 0	Angular dependence of light trapping in nanophotonic thin-film solar cells. <i>Optics Express</i> , 2015 , 23, A15	5 75 -88	9
289	Thermography and electroluminescence imaging of scribing failures in Cu(In,Ga)Se2 thin film solar modules. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2015 , 212, 2877-2888	1.6	1
288	Shunt mitigation in ZnO:Al/i-ZnO/CdS/Cu(In,Ga)Se2 solar modules by the i-ZnO/CdS buffer combination. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2015 , 212, 541-546	1.6	12
287	Defect Diagnostics of Scribing Failures and Cu-Rich Debris in Cu(In,Ga)Se\$_2\$ Thin-Film Solar Modules With Electroluminescence and Thermography. <i>IEEE Journal of Photovoltaics</i> , 2015 , 5, 1179-118	3 .7	6
286	Current Concepts for Optical Path Enhancement in Solar Cells 2015 , 1-20		4
285	Fluorescent Concentrators for Photovoltaic Applications 2015 , 283-321		4
284	The Principle of Detailed Balance and the Opto-Electronic Properties of Solar Cells 2015 , 21-48		1
283	Rear Side Diffractive Gratings for Silicon Wafer Solar Cells 2015 , 49-90		
282	Light-Trapping in Solar Cells by Directionally Selective Filters 2015 , 183-207		1
281	Linear Optics of Plasmonic Concepts to Enhance Solar Cell Performance 2015 , 209-230		1
280	A new 2D model for the electrical potential in a cell stripe in thin-film solar modules including local defects. <i>Progress in Photovoltaics: Research and Applications</i> , 2015 , 23, 331-339	6.8	4
279	Solution-Based Silicon in Thin-Film Solar Cells. <i>Advanced Energy Materials</i> , 2014 , 4, 1301871	21.8	26
278	Disorder improves nanophotonic light trapping in thin-film solar cells. <i>Applied Physics Letters</i> , 2014 , 104, 131102	3.4	42
277	Optically active defects in SiC, SiOx single layers and SiC/SiOx hetero-superlattices. <i>Solar Energy Materials and Solar Cells</i> , 2014 , 129, 3-6	6.4	3

276	On the thermodynamics of light trapping in solar cells. <i>Nature Materials</i> , 2014 , 13, 103-4	27	20
275	Impact of doped microcrystalline silicon oxide layers on crystalline silicon surface passivation. <i>Canadian Journal of Physics</i> , 2014 , 92, 758-762	1.1	7
274	Nanoscale observation of waveguide modes enhancing the efficiency of solar cells. <i>Nano Letters</i> , 2014 , 14, 6599-605	11.5	28
273	Thermodynamics of light management in photovoltaic devices. <i>Physical Review B</i> , 2014 , 90,	3.3	137
272	Effect of localized states on the reciprocity between quantum efficiency and electroluminescence in Cu(In,Ga)Se2 and Si thin-film solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2014 , 129, 95-103	6.4	22
271	Cu(In,Ga)Se2 AND RELATED SOLAR CELLS. Series on Photoconversion of Solar Energy, 2014 , 245-305		2
270	a-Si:H/Ūc-Si:H tandem junction based photocathodes with high open-circuit voltage for efficient hydrogen production. <i>Journal of Materials Research</i> , 2014 , 29, 2605-2614	2.5	34
269	Photocurrent collection efficiency mapping of a silicon solar cell by a differential luminescence imaging technique. <i>Applied Physics Letters</i> , 2014 , 105, 163507	3.4	20
268	Advancing tandem solar cells by spectrally selective multilayer intermediate reflectors. <i>Optics Express</i> , 2014 , 22 Suppl 5, A1270-7	3.3	20
267	Small-signal lock-in thermography at the maximum power point of an a-Si solar mini-module. <i>Physica Status Solidi - Rapid Research Letters</i> , 2014 , 8, 894-897	2.5	1
266	Degradation of tandem solar cells: Separating matching effects from Staebler-Wronski Effect using the Power-Matching-Method 2014 ,		1
265	On the geometry of plasmonic reflection grating back contacts for light trapping in prototype amorphous silicon thin-film solar cells. <i>Journal of Photonics for Energy</i> , 2014 , 5, 057004	1.2	11
264	Development of Thin Film Amorphous Silicon Tandem Junction Based Photocathodes Providing High Open-Circuit Voltages for Hydrogen Production. <i>International Journal of Photoenergy</i> , 2014 , 2014, 1-10	2.1	36
263	Deposition of intrinsic hydrogenated amorphous silicon for thin-film solar cells la comparative study for layers grown statically by RF-PECVD and dynamically by VHF-PECVD. <i>Progress in Photovoltaics: Research and Applications</i> , 2014 , 22, 198-207	6.8	5
262	Novel series connection concept for thin film solar modules. <i>Progress in Photovoltaics: Research and Applications</i> , 2013 , 21, 972-979	6.8	10
261	Analysis of short circuit current gains by an anti-reflective textured cover on silicon thin film solar cells. <i>Progress in Photovoltaics: Research and Applications</i> , 2013 , 21, 1672-1681	6.8	62
260	Cu(In,Ga)Se2 Thin-Film Solar Cells 2013 , 261-304		4
259	Microcrystalline siliconBxygen alloys for application in silicon solar cells and modules. <i>Solar Energy Materials and Solar Cells</i> , 2013 , 119, 134-143	6.4	98

258	Effect of light soaking on the electro- and photoluminescence of Cu(In,Ga)Se2 solar cells. <i>Applied Physics Letters</i> , 2013 , 103, 183504	3.4	11
257	Plasmonic back contacts with non-ordered Ag nanostructures for light trapping in thin-film silicon solar cells. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2013 , 178, 630-634	3.1	13
256	Transient phenomena in Cu(In,Ga)Se2 solar modules investigated by electroluminescence imaging. <i>Thin Solid Films</i> , 2013 , 535, 307-310	2.2	14
255	Electrical characterization of P3 isolation lines patterned with a UV laser incident from the film side on thin-film silicon solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2013 , 108, 87-92	6.4	6
254	Local junction voltages and radiative ideality factors of a-Si:H solar modules determined by electroluminescence imaging. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1536, 105-111		1
253	Matching of Silicon Thin-Film Tandem Solar Cells for Maximum Power Output. <i>International Journal of Photoenergy</i> , 2013 , 2013, 1-7	2.1	22
252	Optimized amorphous silicon oxide buffer layers for silicon heterojunction solar cells with microcrystalline silicon oxide contact layers. <i>Journal of Applied Physics</i> , 2013 , 113, 134501	2.5	42
251	Quantitative evaluation method for electroluminescence images of a-Si:H thin-film solar modules. <i>Physica Status Solidi - Rapid Research Letters</i> , 2013 , 7, 627-630	2.5	9
250	Wide Gap Microcrystalline Silicon Oxide Emitter for a-SiOx:H/c-Si Heterojunction Solar Cells. <i>Japanese Journal of Applied Physics</i> , 2013 , 52, 122304	1.4	36
249	Measurement and modeling of reverse biased electroluminescence in multi-crystalline silicon solar cells. <i>Journal of Applied Physics</i> , 2013 , 114, 134509	2.5	8
248	Analysis of the series resistance in pin-type thin-film silicon solar cells. <i>Journal of Applied Physics</i> , 2013 , 113, 134503	2.5	13
247	Electroluminescence of Cu(In,Ga)Se2 solar cells and modules. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1538, 133-144		
246	Spectrally selective intermediate reflectors for tandem thin-film silicon solar cells 2013,		4
245	. IEEE Journal of Photovoltaics, 2012 , 2, 169-172	3.7	49
244	Annealing induced defects in SiC, SiOx single layers, and SiC/SiOx hetero-superlattices. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2012 , 209, 1960-1964	1.6	6
243	Modelling of photo- and electroluminescence of hydrogenated microcrystalline silicon solar cells. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2012 , 9, 1963-1967		11
242	Defect passivation by hydrogen reincorporation for silicon quantum dots in SiC/SiOx hetero-superlattice. <i>Journal of Non-Crystalline Solids</i> , 2012 , 358, 2145-2149	3.9	17
241	Optical simulations of microcrystalline silicon solar cells applying plasmonic reflection grating back contacts. <i>Journal of Photonics for Energy</i> , 2012 , 2, 027002	1.2	13

(2011-2012)

240	Simulations of geometry effects and loss mechanisms affecting the photon collection in photovoltaic fluorescent collectors. <i>EPJ Photovoltaics</i> , 2012 , 3, 30101	0.7	7
239	Silicon heterojunction solar cell with amorphous silicon oxide buffer and microcrystalline silicon oxide contact layers. <i>Physica Status Solidi - Rapid Research Letters</i> , 2012 , 6, 193-195	2.5	44
238	Cu(In,Ga)Se2 Thin-Film Solar Cells 2012 , 323-371		3
237	Field-dependent exciton dissociation in organic heterojunction solar cells. <i>Physical Review B</i> , 2012 , 85,	3.3	32
236	Analysis of sub-stoichiometric hydrogenated silicon oxide films for surface passivation of crystalline silicon solar cells. <i>Journal of Applied Physics</i> , 2012 , 112, 054905	2.5	30
235	Understanding junction breakdown in multicrystalline solar cells. <i>Journal of Applied Physics</i> , 2011 , 109, 071101	2.5	92
234	Silicon quantum dot formation in SiC/SiOx hetero-superlattice. Energy Procedia, 2011, 10, 249-254	2.3	15
233	Design of nanostructured plasmonic back contacts for thin-film silicon solar cells. <i>Optics Express</i> , 2011 , 19 Suppl 6, A1219-30	3.3	74
232	Three-dimensional photonic crystal intermediate reflectors for enhanced light-trapping in tandem solar cells. <i>Advanced Materials</i> , 2011 , 23, 3896-900	24	53
231	Characterization and simulation of a-Si:H/E-Si:H tandem solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2011 , 95, 3318-3327	6.4	74
230	Recombination via tail states in polythiophene:fullerene solar cells. <i>Physical Review B</i> , 2011 , 83,	3.3	312
229	Investigation of laser scribing of a-Si:H from the film side for solar modules using a UV laser with ns pulses. <i>Applied Physics A: Materials Science and Processing</i> , 2011 , 105, 355-362	2.6	7
228	Ray tracing for the optics at nano-textured ZnOBir and ZnOBilicon interfaces. <i>Progress in Photovoltaics: Research and Applications</i> , 2011 , 19, 724-732	6.8	9
227	Introduction to Thin-Film Photovoltaics 2011 , 1-32		3
226	Scanning Probe Microscopy on Inorganic Thin Films for Solar Cells 2011 , 275-298		2
225	Electron Microscopy on Thin Films for Solar Cells 2011 , 299-345		2
224	Soft X-Ray and Electron Spectroscopy: A Unique Tool ChestIto Characterize the Chemical and Electronic Properties of Surfaces and Interfaces 2011 , 387-409		1
223	Hydrogen Effusion Experiments 2011 , 449-475		8

222	One-Dimensional Electro-Optical Simulations of Thin-Film Solar Cells 2011 , 501-527		8
221	Fundamental Electrical Characterization of Thin-Film Solar Cells 2011 , 33-60		11
220	Two- and Three-Dimensional Electronic Modeling of Thin-Film Solar Cells 2011 , 529-540		3
219	Electroluminescence Analysis of Solar Cells and Solar Modules 2011 , 61-80		6
218	Capacitance Spectroscopy of Thin-Film Solar Cells 2011 , 81-105		24
217	Photoluminescence Analysis of Thin-Film Solar Cells 2011 , 151-175		28
216	Structure and electronic properties of E-SiC:H for photovoltaic applications. <i>Journal of Physics: Conference Series</i> , 2011 , 326, 012019	0.3	7
215	Plasmonic reflection grating back contacts for microcrystalline silicon solar cells. <i>Applied Physics Letters</i> , 2011 , 99, 181105	3.4	97
214	Localized plasmonic losses at metal back contacts of thin-film silicon solar cells 2010,		18
213	Enhanced light trapping in thin amorphous silicon solar cells by directionally selective optical filters 2010 ,		1
212	Enhanced light trapping in thin-film solar cells by a directionally selective filter. <i>Optics Express</i> , 2010 , 18 Suppl 2, A133-8	3.3	27
211	3D photonic crystals for photon management in solar cells 2010 ,		1
210		(
	Inverted-opal photonic crystals for ultra light-trapping in solar cells 2010,		1
209	Inverted-opal photonic crystals for ultra light-trapping in solar cells 2010 , Ray tracing analysis of light scattering properties of randomly nano-textured ZnO films 2010 ,		1
		6.4	
209	Ray tracing analysis of light scattering properties of randomly nano-textured ZnO films 2010 , Quantitative electroluminescence analysis of resistive losses in Cu(In, Ga)Se2 thin-film modules.	6.4	1
209	Ray tracing analysis of light scattering properties of randomly nano-textured ZnO films 2010 , Quantitative electroluminescence analysis of resistive losses in Cu(In, Ga)Se2 thin-film modules. Solar Energy Materials and Solar Cells, 2010 , 94, 979-984 Reverse biased electroluminescence spectroscopy of crystalline silicon solar cells with high spatial		71

(2008-2009)

20	04	Electroluminescence imaging of Cu(In,Ga)Se2 thin film solar modules. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1165, 1		3	
20	03	Evaluation of electron beam induced current profiles of Cu(In,Ga)Se2 solar cells with different Ga-contents. <i>Thin Solid Films</i> , 2009 , 517, 2357-2359	2.2	19	
20	02	Grain boundaries in Cu(In, Ga)(Se, S)2 thin-film solar cells. <i>Applied Physics A: Materials Science and Processing</i> , 2009 , 96, 221-234	2.6	142	
20	01	Reciprocity between electroluminescence and quantum efficiency used for the characterization of silicon solar cells. <i>Progress in Photovoltaics: Research and Applications</i> , 2009 , 17, 394-402	6.8	73	
20	00	Modeling charge carrier collection in multiple exciton generating PbSe quantum dots. <i>Thin Solid Films</i> , 2009 , 517, 2438-2442	2.2	5	
19	99	Efficiency Limits of Organic Bulk Heterojunction Solar Cells. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 17958-17966	3.8	190	
19	98	Mobility dependent efficiencies of organic bulk heterojunction solar cells: Surface recombination and charge transfer state distribution. <i>Physical Review B</i> , 2009 , 80,	3.3	88	
19	97	Internal voltages in GaInPtaInAste multijunction solar cells determined by electroluminescence measurements. <i>Applied Physics Letters</i> , 2008 , 92, 123502	3.4	107	
19	96	Rugate filter for light-trapping in solar cells. <i>Optics Express</i> , 2008 , 16, 9332-43	3.3	52	
19	95	Efficient light trapping scheme by periodic and quasi-random light trapping structures. <i>Conference Record of the IEEE Photovoltaic Specialists Conference</i> , 2008 ,		2	
19	94	Enhanced Light-trapping in Solar Cells by Directional Selective Optical Filters. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1101, 1			
19	93	Loss Mechanisms in Photovoltaic Fluorescent Collectors. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1101, 1			
19	92	Quantification of Light Trapping Using a Reciprocity Between Electroluminescent Emission and Photovoltaic Action in a Solar Cell. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1101, 1		3	
19	91	Influence of base pressure and atmospheric contaminants on a-Si:H solar cell properties. <i>Journal of Applied Physics</i> , 2008 , 104, 094507	2.5	21	
19	90	Numerical simulation of carrier collection and recombination at grain boundaries in Cu(In,Ga)Se2 solar cells. <i>Journal of Applied Physics</i> , 2008 , 103, 094523	2.5	58	
18	89	Finite mobility effects on the radiative efficiency limit of pn-junction solar cells. <i>Physical Review B</i> , 2008 , 77,	3.3	53	
18	88	Geometry effects on photon collection in photovoltaic fluorescent collectors 2008,		2	
18	87	Directional selectivity and light-trapping in solar cells 2008,		4	

186	Material development for dye solar modules: results from an integrated approach. <i>Progress in Photovoltaics: Research and Applications</i> , 2008 , 16, 489-501	6.8	54
185	Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2008 , 205, 2811-2821	1.6	45
184	Directional selectivity and ultra-light-trapping in solar cells. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2008 , 205, 2831-2843	1.6	51
183	Detailed balance and reciprocity in solar cells. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2008 , 205, 2737-2751	1.6	87
182	Preface: phys. stat. sol. (a) 205/12. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2008 , 205, 2735-2736	1.6	2
181	Note on the interpretation of electroluminescence images using their spectral information. <i>Solar Energy Materials and Solar Cells</i> , 2008 , 92, 1621-1627	6.4	37
180	Charge separation in excitonic and bipolar solar cells [A detailed balance approach. <i>Thin Solid Films</i> , 2008 , 516, 7144-7148	2.2	9
179	Electro-optical modeling of bulk heterojunction solar cells. <i>Journal of Applied Physics</i> , 2008 , 104, 09451	32.5	63
178	Detailed balance theory of excitonic and bulk heterojunction solar cells. <i>Physical Review B</i> , 2008 , 78,	3.3	86
177	Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. <i>Physical Review B</i> , 2007 , 76,	3.3	698
176	Light absorption and emission in semiconductors with band gap fluctuations study on Cu(In,Ga)Se2 thin films. <i>Journal of Applied Physics</i> , 2007 , 101, 113519	2.5	84
175	Carrier collection in Cu(In,Ga)Se2 solar cells with graded band gaps and transparent ZnO:Al back contacts. <i>Solar Energy Materials and Solar Cells</i> , 2007 , 91, 689-695	6.4	37
174	Characterization of the CdS/Cu(In,Ga)Se2 interface by electron beam induced currents. <i>Thin Solid Films</i> , 2007 , 515, 6163-6167	2.2	26
173	Comparative study of electroluminescence from Cu(In,Ga)Se2 and Si solar cells. <i>Thin Solid Films</i> , 2007 , 515, 6238-6242	2.2	88
172	Time constants of open circuit voltage relaxation in Cu(In,Ga)Se2 solar cells. <i>Thin Solid Films</i> , 2007 , 515, 6243-6245	2.2	8
171	High quality baseline for high efficiency, Cu(In1⊠,Gax)Se2 solar cells. <i>Progress in Photovoltaics:</i> Research and Applications, 2007 , 15, 507-519	6.8	152
170	Improvement of photon collection in Cu(In,Ga)Se2 solar cells and modules by fluorescent frequency conversion. <i>Thin Solid Films</i> , 2007 , 515, 5964-5967	2.2	36
169	Electroluminescence analysis of high efficiency Cu(In,Ga)Se2 solar cells. <i>Journal of Applied Physics</i> , 2007 , 102, 104510	2.5	79

Can Grain Boundaries Improve the Performance of Cu(In,Ga)Se2 Solar Cells?. Materials Research 168 Society Symposia Proceedings, 2007, 1012, 1 Electroluminescence from Cu(In,Ga)Se2 Thin-film Solar Cells. Materials Research Society Symposia 167 Proceedings, 2007, 1012, 1 Resistive Losses at c-Si/a-Si:H/ZnO Contacts for Heterojunction Solar Cells. Materials Research 166 Society Symposia Proceedings, 2007, 989, 4 Recombination and resistive losses at ZnOB-Si:HB-Si interfaces in heterojunction back contacts for 165 2.5 23 Si solar cells. Journal of Applied Physics, 2007, 102, 094507 Spatial inhomogeneities in Cu(In,Ga)Se2 solar cells analyzed by an electron beam induced voltage 164 2.5 20 technique. Journal of Applied Physics, 2006, 100, 124501 Anodizing Method Yielding Multiple Porous Seed Layers for the Epitaxial Growth of 163 2 3.9 Monocrystalline Si Films. Journal of the Electrochemical Society, 2006, 153, C133 162 Recombination Mechanisms in Cu(In,Ga)(Se,S)2 Solar Cells. Springer Series in Materials Science, 2006, 91-144 4 Response to Comment on Efficiency limits of photovoltaic fluorescent collectors[Appl. Phys. 161 3.4 Lett. 87, 171101 (2005) [[Applied Physics Letters, **2006**, 88, 176102 Influence of Cu content on electronic transport and shunting behavior of Cu(In,Ga)Se2 solar cells. 160 96 2.5 Journal of Applied Physics, 2006, 99, 014906 Glass Frit Sealed Dye Solar Modules with Adaptable Screen Printed Design 2006, 159 4 Collection and conversion properties of photovoltaic fluorescent collectors with photonic band 158 10 stop filters 2006, 20屆% efficient silicon solar cell with a low temperature rear side process using laser-fired contacts. 6.8 157 Progress in Photovoltaics: Research and Applications, 2006, 14, 653-662 Low-temperature a-Si:H/ZnO/Al back contacts for high-efficiency silicon solar cells. Solar Energy 156 6.4 57 Materials and Solar Cells, 2006, 90, 1345-1352 Texture and electronic activity of grain boundaries in Cu(In,Ga)Se2 thin films. Applied Physics A: 2.6 76 155 Materials Science and Processing, 2006, 82, 1-7 Efficiency limits of photovoltaic fluorescent collectors. Applied Physics Letters, 2005, 87, 171101 154 3.4 94 Formation of transparent and ohmic ZnO:Al/MoSe2 contacts for bifacial Cu(In,Ga)Se2 solar cells 2.2 70 153 and tandem structures. Thin Solid Films, 2005, 480-481, 67-70 Influence of built-in voltage in optimized extremely thin absorber solar cells. Thin Solid Films, 2005, 6 152 2.2 480-481, 447-451 Efficiency limitations of polycrystalline thin film solar cells: case of Cu(In,Ga)Se2. Thin Solid Films, 151 2.2 191 **2005**, 480-481, 399-409

Closed-form expression for the current/voltage characteristics of pin solar cells. Applied Physics A:

2

24

2.6

Society Symposia Proceedings, 2003, 763, 8171

Materials Science and Processing, 2003, 77, 865-871

134

133

132	Influence of heterointerfaces on the performance of Cu(In,Ga)Se2 solar cells with CdS and In(OHx,Sy) buffer layers. <i>Thin Solid Films</i> , 2003 , 431-432, 330-334	2.2	30	
131	Consequence of 3-MeV electron irradiation on the photovoltaic output parameters of Cu(In,Ga)Se2 solar cells. <i>Thin Solid Films</i> , 2003 , 431-432, 453-456	2.2	9	
130	Compositional trends of defect energies, band alignments, and recombination mechanisms in the Cu(In,Ga)(Se,S)2 alloy system. <i>Thin Solid Films</i> , 2003 , 431-432, 158-162	2.2	55	
129	Influence of the selenium flux on the growth of Cu(In,Ga)Se2 thin films. <i>Thin Solid Films</i> , 2003 , 431-432, 31-36	2.2	67	
128	High band gap Cu(In,Ga)Se2 solar cells and modules prepared with in-line co-evaporation. <i>Thin Solid Films</i> , 2003 , 431-432, 543-547	2.2	14	
127	Fermi level pinning at CdS/Cu(In,Ga)(Se,S)2 interfaces: effect of chalcopyrite alloy composition. Journal of Physics and Chemistry of Solids, 2003, 64, 1591-1595	3.9	61	
126	Influence of the Built-in Voltage on the Fill Factor of Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 13258-13261	3.4	64	
125	Reply to Comments on Electronic Transport in Dye-Sensitized Nanoporous TiO2 Solar CellsComparison of Electrolyte and Solid-State DevicesIIOn the Photovoltaic Action in pn-Junction and Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 13547-13550	3.4	19	
124	Method to extract diffusion length from solar cell parameters Application to polycrystalline silicon. <i>Journal of Applied Physics</i> , 2003 , 93, 5447-5455	2.5	34	
123	Diffusion Limitations to I[sub 3][sup] [/I[sup]]Electrolyte Transport Through Nanoporous TiO[sub 2] Networks. <i>Electrochemical and Solid-State Letters</i> , 2003 , 6, E11		40	
122	Electronic Transport in Dye-Sensitized Nanoporous TiO2 Solar CellsComparison of Electrolyte and Solid-State Devices. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 3556-3564	3.4	121	
121	Analysis of recombination centers in epitaxial silicon thin-film solar cells by temperature-dependent quantum efficiency measurements. <i>Applied Physics Letters</i> , 2003 , 82, 2637-26	39 ^{3.4}	13	
12 0	Illumination-induced recovery of Cu(In,Ga)Se2 solar cells after high-energy electron irradiation. Applied Physics Letters, 2003 , 82, 1410-1412	3.4	9	
119	Role of Surface Band Gap Widening in Cu(In, Ga)(Se, S)2 Thin-Films for the Photovoltaic Performance of ZnO/CdS/Cu(In, Ga)(Se, S)2 Heterojunction Solar Cells. <i>Materials Research Society</i> Symposia Proceedings, 2003 , 763, 881		4	
118	Electrical characterisation of dye sensitised nanocrystalline TiO2 solar cells with liquid electrolyte and solid-state organic hole conductor. <i>Thin Solid Films</i> , 2002 , 403-404, 242-246	2.2	31	
117	Optimization and characterization of amorphous/crystalline silicon heterojunction solar cells. <i>Progress in Photovoltaics: Research and Applications</i> , 2002 , 10, 1-13	6.8	110	
116	Role of the CdS buffer layer as an active optical element in Cu(In,Ga)Se2 thin-film solar cells. <i>Progress in Photovoltaics: Research and Applications</i> , 2002 , 10, 457-463	6.8	62	
115	Spectral dependence and Hall effect of persistent photoconductivity in polycrystalline Cu(In,Ga)Se2 thin films. <i>Journal of Applied Physics</i> , 2002 , 91, 5093-5099	2.5	43	

114	Control of secondary phase segregations during CuGaSe2 thin-film growth. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2002 , 20, 1247-1253	2.9	12
113	Composition dependence of defect energies and band alignments in the Cu(In1IIGax)(Se1IISy)2 alloy system. <i>Journal of Applied Physics</i> , 2002 , 91, 1391-1399	2.5	92
112	Interdependence of absorber composition and recombination mechanism in Cu(In,Ga)(Se,S)2 heterojunction solar cells. <i>Applied Physics Letters</i> , 2002 , 80, 2598-2600	3.4	204
111	Band alignments in the Cu(In,Ga)(S,Se)2 alloy system determined from deep-level defect energies. <i>Applied Physics A: Materials Science and Processing</i> , 2001 , 73, 769-772	2.6	22
110	Influence of the Ga-content on the bulk defect densities of Cu(In,Ga)Se2. <i>Thin Solid Films</i> , 2001 , 387, 71-73	2.2	163
109	CuGaSe2-based superstrate solar cells. <i>Thin Solid Films</i> , 2001 , 387, 74-76	2.2	11
108	Back surface band gap gradings in Cu(In,Ga)Se2 solar cells. <i>Thin Solid Films</i> , 2001 , 387, 11-13	2.2	123
107	Electronic properties of ZnO/CdS/Cu(In,Ga)Se2 solar cells laspects of heterojunction formation. <i>Thin Solid Films</i> , 2001 , 387, 141-146	2.2	204
106	Radiation resistance of Cu(In,Ga)Se2 solar cells under 1-MeV electron irradiation. <i>Thin Solid Films</i> , 2001 , 387, 228-230	2.2	43
105	Classification of metastabilities in the electrical characteristics of ZnO/CdS/Cu(In,Ga)Se2 solar cells. <i>Thin Solid Films</i> , 2001 , 387, 147-150	2.2	70
104	The role of structural properties and defects for the performance of Cu-chalcopyrite-based thin-film solar cells. <i>Physica B: Condensed Matter</i> , 2001 , 308-310, 1081-1085	2.8	29
103	Electrical characterization of Cu(In,Ga)Se2 thin-film solar cells and the role of defects for the device performance. <i>Solar Energy Materials and Solar Cells</i> , 2001 , 67, 137-143	6.4	100
102	Sodium induced secondary phase segregations in CuGaSe2 thin films. <i>Journal of Crystal Growth</i> , 2001 , 233, 13-21	1.6	19
101	A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se2 chalcopyrite semiconductors. <i>Solar Energy Materials and Solar Cells</i> , 2001 , 67, 145-150	6.4	184
100	Structural and Electronic Properties of Polycrystalline Cu(In,Ga)(S,Se)2 Alloys. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 668, 1		10
99	Two-Dimensional Simulations of Microcrystalline Silicon Solar Cells. <i>Solid State Phenomena</i> , 2001 , 80-81, 311-316	0.4	7
98	Device Analysis of Cu(In,Ga)Se2 Heterojunction Solar Cells - Some Open Questions. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 668, 1		26
97	Grain Boundary Recombination in Thin-Film Silicon Solar Cells. <i>Solid State Phenomena</i> , 2001 , 80-81, 299	-304	17

96	Cu(In,Ga)Se2 SOLAR CELLS. Series on Photoconversion of Solar Energy, 2001 , 277-345		24
95	Defect annealing in Cu(In,Ga)Se2 heterojunction solar cells after high-energy electron irradiation. <i>Applied Physics Letters</i> , 2001 , 79, 2922-2924	3.4	38
94	Defect generation in Cu(In,Ga)Se2 heterojunction solar cells by high-energy electron and proton irradiation. <i>Journal of Applied Physics</i> , 2001 , 90, 650-658	2.5	85
93	High-Energy Electron and Proton Irradiation of Cu(In,Ga)Se2 Heterojunction Solar Cells. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 668, 1		5
92	Open Circuit Voltage Limitations in CuIn1⊠GaxSe2 Thin-Film Solar Cells Dependence on Alloy Composition. <i>Physica Status Solidi A</i> , 2000 , 179, R7-R8		61
91	Photogeneration and carrier recombination in graded gap Cu(In, Ga)Se/sub 2/solar cells. <i>IEEE Transactions on Electron Devices</i> , 2000 , 47, 2249-2254	2.9	52
90	Electronically active defects in CuGaSe 2 -based heterojunction solar cells. <i>Thin Solid Films</i> , 2000 , 361-362, 415-419	2.2	7
89	Electronic loss mechanisms in chalcopyrite based heterojunction solar cells. <i>Thin Solid Films</i> , 2000 , 361-362, 298-302	2.2	106
88	Interface redox engineering of Cu(In,Ga)Se 2 lbased solar cells: oxygen, sodium, and chemical bath effects. <i>Thin Solid Films</i> , 2000 , 361-362, 353-359	2.2	87
87	Influence of sodium on the growth of polycrystalline Cu(In,Ga)Se 2 thin films. <i>Thin Solid Films</i> , 2000 , 361-362, 161-166	2.2	152
86	Influence of damp heat on the electrical properties of Cu(In,Ga)Se2 solar cells. <i>Thin Solid Films</i> , 2000 , 361-362, 283-287	2.2	35
85	Recombination and Resistive Losses in Amorphous Silicon / Crystalline Silicon Heterojunction Solar Cells. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 609, 1311		4
84	Role of Defects and Defect Metastabilities for the Performance and Stability of Cu(In,Ga)Se2Based Solar Cells. <i>Japanese Journal of Applied Physics</i> , 2000 , 39, 389	1.4	6
83	Stability Issues of Cu(In,Ga)Se2-Based Solar Cells. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 4849-4862	3.4	204
82	Electronic properties of CuGaSe2-based heterojunction solar cells. Part II. Defect spectroscopy. Journal of Applied Physics, 2000 , 87, 594-602	2.5	88
81	Electronic properties of CuGaSe2-based heterojunction solar cells. Part I. Transport analysis. <i>Journal of Applied Physics</i> , 2000 , 87, 584-593	2.5	276
80	Charge carrier transport via defect states in Cu(In,Ga)Se2 thin films and Cu(In,Ga)Se2/CdS/ZnO heterojunctions. <i>Physical Review B</i> , 2000 , 61, 16052-16059	3.3	15
79	Recombination mechanisms in amorphous silicon/crystalline silicon heterojunction solar cells. Journal of Applied Physics, 2000 , 87, 2639-2645	2.5	100

78	Heterojunctions for Polycrystalline Silicon Solar Cells. <i>Solid State Phenomena</i> , 1999 , 67-68, 571-576	0.4	6
77	Air-Annealing Effects on Polycrystalline Cu(In,Ga)Se2 Heterojunctions. <i>Solid State Phenomena</i> , 1999 , 67-68, 409-414	0.4	18
76	Injection and Collection Diffusion Lengths of Polycrystalline Thin-Film Solar Cells. <i>Solid State Phenomena</i> , 1999 , 67-68, 81-88	0.4	16
75	An Analytical Model for Rectifying Contacts on Polycrystalline Semiconductors. <i>Solid State Phenomena</i> , 1999 , 67-68, 553-558	0.4	2
74	Effective diffusion lengths for minority carriers in solar cells as determined from internal quantum efficiency analysis. <i>Journal of Applied Physics</i> , 1999 , 85, 3634-3637	2.5	21
73	Electronic properties of Cu(In,Ga)Se2 heterojunction solar cellsEecent achievements, current understanding, and future challenges. <i>Applied Physics A: Materials Science and Processing</i> , 1999 , 69, 131-	- 24 6	457
72	Cu(In,Ga)Se2 Solar Cells: Device Stability Based on Chemical Flexibility. <i>Advanced Materials</i> , 1999 , 11, 957-961	24	89
71	Two-dimensional simulation of thin-film silicon solar cells with innovative device structures 1999 , 7, 85-	100	3
70	Cu(In,Ga)Se2 solar cells with a ZnSe buffer layer: interface characterization by quantum efficiency measurements 1999 , 7, 423-436		51
69	Tunneling-enhanced recombination in Cu(In, Ga)Se2 heterojunction solar cells. <i>Applied Physics Letters</i> , 1999 , 74, 111-113	3.4	121
68	Oxygenation and air-annealing effects on the electronic properties of Cu(In,Ga)Se2 films and devices. <i>Journal of Applied Physics</i> , 1999 , 86, 497-505	2.5	162
67	Phase segregation, Cu migration and junction formation in Cu(In,IGa)Se2. <i>EPJ Applied Physics</i> , 1999 , 6, 131-139	1.1	110
66	A model for the open circuit voltage relaxation in Cu(In,Ga)Se2heterojunction solar cells. <i>EPJ Applied Physics</i> , 1999 , 8, 43-52	1.1	31
65	Cu(In,Ga)Se2 Solar Cells: Device Stability Based on Chemical Flexibility 1999 , 11, 957		5
64	Quantum efficiency and admittance spectroscopy on Cu(In,Ga)Se2 solar cells. <i>Solar Energy Materials and Solar Cells</i> , 1998 , 50, 79-85	6.4	11
63	Model for electronic transport in Cu(In,Ga)Se2 solar cells 1998 , 6, 407-421		164
62	Impact of Na and S incorporation on the electronic transport mechanisms of Cu(In, Ga)Se2 solar cells. <i>Solid State Communications</i> , 1998 , 107, 59-63	1.6	60
61	Metastable electrical transport in Cu(In,Ga)Se2 thin films and ZnO/CdS/Cu(In,Ga)Se2 heterostructures. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1998 , 245, 489-493	2.3	36

60	The detailed balance principle and the reciprocity theorem between photocarrier collection and dark carrier distribution in solar cells. <i>Journal of Applied Physics</i> , 1998 , 84, 6412-6418	2.5	27	
59	Persistent photoconductivity in Cu(In,Ga)Se2 heterojunctions and thin films prepared by sequential deposition. <i>Applied Physics Letters</i> , 1998 , 73, 223-225	3.4	88	
58	Defects in Cu(In, Ga) Se2 semiconductors and their role in the device performance of thin-film solar cells 1997 , 5, 121-130		55	
57	Influence of Na and S incorporation on the electronic transport properties of Cu(In,Ga)Se/sub 2/solar cells 1996 ,		5	
56	Numerical simulation of innovative device structures for silicon thin-film solar cells 1996,		5	
55	Recovery of scaler time-delay systems from time series. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1996 , 211, 345-349	2.3	38	
54	Dielectric spectroscopy of relaxation processes in Cu(In,Ga)Se/sub 2/ solar cells 1996 ,		2	
53	Analysis of internal quantum efficiency and a new graphical evaluation scheme. <i>Solid-State Electronics</i> , 1995 , 38, 1009-1015	1.7	22	
52	Internal quantum efficiency of thin epitaxial silicon solar cells. <i>Applied Physics Letters</i> , 1995 , 66, 1261-12	2634	19	
51	Direct observation of a scaling effect on effective minority carrier lifetimes. <i>Journal of Applied Physics</i> , 1994 , 76, 4168-4172	2.5	25	
50	Schottky Contacts on Silicon. Springer Series in Electrophysics, 1994 , 89-148		4	
49	Silicon solar cell of 16.8 h thickness and 14.7% efficiency. <i>Applied Physics Letters</i> , 1993 , 62, 2998-3000	3.4	40	
48	Band offset variations at Ge/GaAs (100) interfaces. <i>Applied Physics Letters</i> , 1993 , 62, 261-263	3.4	17	
47	On Negative Differential Resistance and Spontaneous Dissipative Structure Formation in the Electric Break-Down of p-Ge at Low Temperatures. <i>NATO ASI Series Series B: Physics</i> , 1993 , 261-268			
46	An oscillation mechanism of semiconductor breakdown due to magnetic field induced transverse motion of current filaments. <i>Semiconductor Science and Technology</i> , 1992 , 7, B486-B487	1.8	1	
45	The Ideality of Spatially Inhomogeneous Schottky Contacts. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 260, 245		9	
44	Barrier Inhomogeneities at Schottky Contacts: Curved Richardson Plots, Idealities, and Flat Band Barriers. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 260, 311		5	
43	Barrier Inhomogeneities Dominating Low-Frequency Excess Noise of Schottky Contacts. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 260, 305		4	

42	Reconstruction of traveling waves in semi-insulating GaAs. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1991 , 152, 356-360	2.3	9
41	Resonant imaging of a critical dynamical state in the low-temperature electric transport of p-Ge. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1991 , 153, 385-389	2.3	5
40	Evidence of Type-III Intermittency in the Electric Breakdown of p -Type Germanium. <i>Europhysics Letters</i> , 1991 , 14, 1-6	1.6	19
39	Classification of spontaneous oscillations at the onset of avalanche breakdown in p-type germanium. <i>Physical Review B</i> , 1991 , 43, 2255-2262	3.3	37
38	Dynamics of current filaments in p-type germanium under the influence of a transverse magnetic field. <i>Journal of Applied Physics</i> , 1991 , 70, 232-235	2.5	22
37	On the Scaling of Type-1 Intermittency in a Semiconductor Experiment. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1991 , 46, 1012-1014	1.4	5
36	Spatio [Temporal Correlations in Semiconductors 1991 , 145-176		4
35	First Evidence of Self-Organized Criticality in the Impact Ionization Breakdown of Semiconductors. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1990 , 45, 835-836	1.4	
34	Observation of a Large-Scale Sheetlike Current Filament in a Thinn-GaAs Layer. <i>Journal of the Physical Society of Japan</i> , 1990 , 59, 420-423	1.5	21
33	Electron-beam induced instability during filamentary current transport inn-GaAs. <i>European Physical Journal B</i> , 1990 , 81, 53-58	1.2	18
32	Circuit-limited oscillation at the onset of avalanche breakdown in semiconductors. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1990 , 147, 229-233	2.3	11
31	Nascent states of current filamentation in semiconductors governed by negative differential resistance. <i>Solid State Communications</i> , 1990 , 73, 369-372	1.6	4
30	Self-Organized Critical Behaviour in the Low-Temperature Impact Ionization Breakdown of p-Ge. <i>Europhysics Letters</i> , 1990 , 12, 423-428	1.6	17
29	Nonequilibrium phase transition in the electronic transport of p-type germanium at low temperatures. <i>Physical Review B</i> , 1990 , 42, 9019-9024	3.3	10
28	Nucleation and growth of current filaments in semiconductors. <i>Journal of Applied Physics</i> , 1990 , 67, 141	2:1;41	6 2 3
27	Impact ionization avalanche breakdown in short crystal regions of p-Ge. <i>Journal of Applied Physics</i> , 1990 , 67, 2980-2984	2.5	16
26	Critical Dynamics near the Onset of Spontaneous Oscillations in p -Germanium. <i>Europhysics Letters</i> , 1989 , 9, 743-748	1.6	20
25	Symmetry-breaking pattern formation in semiconductor physics: Spatio-temporal current structures during avalanche breakdown. <i>Computers and Mathematics With Applications</i> , 1989 , 17, 467-4	73 ^{.7}	1

24	Impact ionization breakdown in p-germanium samples with very short contact distances. <i>Solid-State Electronics</i> , 1989 , 32, 1197-1200	1.7	2
23	Imaging of spatio-temporal structures in semiconductors. <i>Solid-State Electronics</i> , 1989 , 32, 1365-1369	1.7	21
22	Classification of current instabilities during low-temperature breakdown in germanium. <i>Applied Physics A: Solids and Surfaces</i> , 1989 , 48, 155-160		29
21	Characteristic Relaxation Times of Low-temperature Semiconductor Breakdown Kinetics. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1989 , 44, 629-632	1.4	2
20	Cryoelectronic Application of a Hybrid Device Concept Based on Semiconducting and Superconducting Components 1989 , 575-578		
19	SYMMETRY-BREAKING PATTERN FORMATION IN SEMICONDUCTOR PHYSICS: SPATIO-TEMPORAL CURRENT STRUCTURES DURING AVALANCHE BREAKDOWN 1989 , 467-473		
18	Spatio-temporal instabilities in the electric breakdown of p-germanium. <i>Solid-State Electronics</i> , 1988 , 31, 817-820	1.7	21
17	Determination of electric transport properties in the pre- and post-breakdown regime ofp-germanium. <i>European Physical Journal B</i> , 1988 , 72, 225-233	1.2	30
16	Switching behavior of current filaments inp-germanium connected in parallel. <i>European Physical Journal B</i> , 1988 , 71, 305-310	1.2	9
15	Hall-effect measurements during low-temperature avalanche breakdown of p-germanium. <i>Philosophical Magazine Letters</i> , 1988 , 57, 311-314	1	2
14	SPATIO-TEMPORAL INSTABILITIES IN THE ELECTRIC BREAKDOWN OF P-GERMANIUM 1988 , 817-820		
13	Notizen: Comparison Between a Generic Reaction- Diffusion Model and a Synergetic Semiconductor System. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1987 , 42, 655-656	1.4	14
12	Exemplary locking sequence during self-generated quasiperiodicity of extrinsic germanium. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1987 , 124, 335-339	2.3	27
11	New aspects of phase segregation and junction formation in CulnSe/sub 2/		3
10	Metastable changes of the electrical transport properties of Cu(In,Ga)Se/sub 2/		3
9	Transport analysis for polycrystalline silicon solar cells on glass substrates		3
8			1
7	Optical Optimization Potential of Transparent-Passivated Contacts in Silicon Solar Cells. <i>Solar Rrl</i> ,21010	501	1

6	Batteries to Keep Solar-Driven Water Splitting Running at Night: Performance of a Directly Coupled System. <i>Solar Rrl</i> ,2100916	7.1	O
5	Dielectric Junction: Electrostatic Design for Charge Carrier Collection in Solar Cells. <i>Solar Rrl</i> ,2100720	7.1	2
4	Device Performance of Emerging Photovoltaic Materials (Version 2). Advanced Energy Materials,210252	2 6 21.8	17
3	Consistent Interpretation of Electrical and Optical Transients in Halide Perovskite Layers and Solar Cells. <i>Advanced Energy Materials</i> ,2102290	21.8	1
2	How Thin Practical Silicon Heterojunction Solar Cells Could Be? Experimental Study under 1 Sun and under Indoor Illumination. <i>Solar Rrl</i> ,2100594	7.1	1
1	Effect of Doping, Photodoping, and Bandgap Variation on the Performance of Perovskite Solar Cells. <i>Advanced Optical Materials</i> ,2101947	8.1	1