Uwe Rau

List of Publications by Citations

Source: https://exaly.com/author-pdf/8868968/uwe-rau-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

401 13,907 64 102 g-index

435 15,594 5 6.83 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
401	Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. <i>Physical Review B</i> , 2007 , 76,	3.3	698
400	Electronic properties of Cu(In,Ga)Se2 heterojunction solar cellsElecent achievements, current understanding, and future challenges. <i>Applied Physics A: Materials Science and Processing</i> , 1999 , 69, 131-	· 74 7	457
399	Recombination via tail states in polythiophene:fullerene solar cells. <i>Physical Review B</i> , 2011 , 83,	3.3	312
398	Electronic properties of CuGaSe2-based heterojunction solar cells. Part I. Transport analysis. Journal of Applied Physics, 2000 , 87, 584-593	2.5	276
397	Open-Circuit Voltages Exceeding 1.26 V in Planar Methylammonium Lead Iodide Perovskite Solar Cells. <i>ACS Energy Letters</i> , 2019 , 4, 110-117	20.1	216
396	Electronic properties of ZnO/CdS/Cu(In,Ga)Se2 solar cells (aspects of heterojunction formation. <i>Thin Solid Films</i> , 2001 , 387, 141-146	2.2	204
395	Interdependence of absorber composition and recombination mechanism in Cu(In,Ga)(Se,S)2 heterojunction solar cells. <i>Applied Physics Letters</i> , 2002 , 80, 2598-2600	3.4	204
394	Stability Issues of Cu(In,Ga)Se2-Based Solar Cells. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 4849-4862	3.4	204
393	Efficiency limitations of polycrystalline thin film solar cells: case of Cu(In,Ga)Se2. <i>Thin Solid Films</i> , 2005 , 480-481, 399-409	2.2	191
392	Efficiency Limits of Organic Bulk Heterojunction Solar Cells. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 17958-17966	3.8	190
391	A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se2 chalcopyrite semiconductors. <i>Solar Energy Materials and Solar Cells</i> , 2001 , 67, 145-150	6.4	184
390	Radiative efficiency limits of solar cells with lateral band-gap fluctuations. <i>Applied Physics Letters</i> , 2004 , 84, 3735-3737	3.4	166
389	Model for electronic transport in Cu(In,Ga)Se2 solar cells 1998 , 6, 407-421		164
388	Influence of the Ga-content on the bulk defect densities of Cu(In,Ga)Se2. <i>Thin Solid Films</i> , 2001 , 387, 71-73	2.2	163
387	Oxygenation and air-annealing effects on the electronic properties of Cu(In,Ga)Se2 films and devices. <i>Journal of Applied Physics</i> , 1999 , 86, 497-505	2.5	162
386	Efficiency Potential of Photovoltaic Materials and Devices Unveiled by Detailed-Balance Analysis. <i>Physical Review Applied</i> , 2017 , 7,	4.3	154
385	High quality baseline for high efficiency, Cu(In1\(\mathbb{R}\),Gax)Se2 solar cells. <i>Progress in Photovoltaics:</i> Research and Applications, 2007 , 15, 507-519	6.8	152

(2006-2000)

384	Influence of sodium on the growth of polycrystalline Cu(In,Ga)Se 2 thin films. <i>Thin Solid Films</i> , 2000 , 361-362, 161-166	2.2	152
383	Beyond Bulk Lifetimes: Insights into Lead Halide Perovskite Films from Time-Resolved Photoluminescence. <i>Physical Review Applied</i> , 2016 , 6,	4.3	144
382	Grain boundaries in Cu(In, Ga)(Se, S)2 thin-film solar cells. <i>Applied Physics A: Materials Science and Processing</i> , 2009 , 96, 221-234	2.6	142
381	Thermodynamics of light management in photovoltaic devices. <i>Physical Review B</i> , 2014 , 90,	3.3	137
380	Back surface band gap gradings in Cu(In,Ga)Se2 solar cells. <i>Thin Solid Films</i> , 2001 , 387, 11-13	2.2	123
379	Electronic Transport in Dye-Sensitized Nanoporous TiO2 Solar CellsComparison of Electrolyte and Solid-State Devices. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 3556-3564	3.4	121
378	Tunneling-enhanced recombination in Cu(In, Ga)Se2 heterojunction solar cells. <i>Applied Physics Letters</i> , 1999 , 74, 111-113	3.4	121
377	Optimization and characterization of amorphous/crystalline silicon heterojunction solar cells. <i>Progress in Photovoltaics: Research and Applications</i> , 2002 , 10, 1-13	6.8	110
376	Phase segregation, Cu migration and junction formation in Cu(In,IGa)Se2. <i>EPJ Applied Physics</i> , 1999 , 6, 131-139	1.1	110
375	Multijunction Si photocathodes with tunable photovoltages from 2.0 V to 2.8 V for light induced water splitting. <i>Energy and Environmental Science</i> , 2016 , 9, 145-154	35.4	107
374	Internal voltages in GaInPtainAste multijunction solar cells determined by electroluminescence measurements. <i>Applied Physics Letters</i> , 2008 , 92, 123502	3.4	107
373	Electronic loss mechanisms in chalcopyrite based heterojunction solar cells. <i>Thin Solid Films</i> , 2000 , 361-362, 298-302	2.2	106
372	What Makes a Good Solar Cell?. Advanced Energy Materials, 2018, 8, 1703385	21.8	104
371	Electrical characterization of Cu(In,Ga)Se2 thin-film solar cells and the role of defects for the device performance. <i>Solar Energy Materials and Solar Cells</i> , 2001 , 67, 137-143	6.4	100
370	Recombination mechanisms in amorphous silicon/crystalline silicon heterojunction solar cells. <i>Journal of Applied Physics</i> , 2000 , 87, 2639-2645	2.5	100
369	Microcrystalline siliconBxygen alloys for application in silicon solar cells and modules. <i>Solar Energy Materials and Solar Cells</i> , 2013 , 119, 134-143	6.4	98
368	Plasmonic reflection grating back contacts for microcrystalline silicon solar cells. <i>Applied Physics Letters</i> , 2011 , 99, 181105	3.4	97
367	Influence of Cu content on electronic transport and shunting behavior of Cu(In,Ga)Se2 solar cells. <i>Journal of Applied Physics</i> , 2006 , 99, 014906	2.5	96

366	Impact of Photon Recycling on the Open-Circuit Voltage of Metal Halide Perovskite Solar Cells. <i>ACS Energy Letters</i> , 2016 , 1, 731-739	20.1	96
365	Efficiency limits of photovoltaic fluorescent collectors. <i>Applied Physics Letters</i> , 2005 , 87, 171101	3.4	94
364	How to Report Record Open-Circuit Voltages in Lead-Halide Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2020 , 10, 1902573	21.8	94
363	Understanding junction breakdown in multicrystalline solar cells. <i>Journal of Applied Physics</i> , 2011 , 109, 071101	2.5	92
362	Composition dependence of defect energies and band alignments in the Cu(In1\(\text{In1}\(\text{Igax}\))(Se1\(\text{IgSy}\))2 alloy system. Journal of Applied Physics, 2002, 91, 1391-1399	2.5	92
361	Cu(In,Ga)Se2 Solar Cells: Device Stability Based on Chemical Flexibility. <i>Advanced Materials</i> , 1999 , 11, 957-961	24	89
360	Mobility dependent efficiencies of organic bulk heterojunction solar cells: Surface recombination and charge transfer state distribution. <i>Physical Review B</i> , 2009 , 80,	3.3	88
359	Comparative study of electroluminescence from Cu(In,Ga)Se2 and Si solar cells. <i>Thin Solid Films</i> , 2007 , 515, 6238-6242	2.2	88
358	Electronic properties of CuGaSe2-based heterojunction solar cells. Part II. Defect spectroscopy. Journal of Applied Physics, 2000 , 87, 594-602	2.5	88
357	Persistent photoconductivity in Cu(In,Ga)Se2 heterojunctions and thin films prepared by sequential deposition. <i>Applied Physics Letters</i> , 1998 , 73, 223-225	3.4	88
356	Detailed balance and reciprocity in solar cells. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2008 , 205, 2737-2751	1.6	87
355	Interface redox engineering of Cu(In,Ga)Se 2 Ibased solar cells: oxygen, sodium, and chemical bath effects. <i>Thin Solid Films</i> , 2000 , 361-362, 353-359	2.2	87
354	Detailed balance theory of excitonic and bulk heterojunction solar cells. <i>Physical Review B</i> , 2008 , 78,	3.3	86
353	Defect generation in Cu(In,Ga)Se2 heterojunction solar cells by high-energy electron and proton irradiation. <i>Journal of Applied Physics</i> , 2001 , 90, 650-658	2.5	85
352	Light absorption and emission in semiconductors with band gap fluctuations A study on Cu(In,Ga)Se2 thin films. <i>Journal of Applied Physics</i> , 2007 , 101, 113519	2.5	84
351	Electroluminescence analysis of high efficiency Cu(In,Ga)Se2 solar cells. <i>Journal of Applied Physics</i> , 2007 , 102, 104510	2.5	79
350	Upscaling of integrated photoelectrochemical water-splitting devices to large areas. <i>Nature Communications</i> , 2016 , 7, 12681	17.4	76
349	Texture and electronic activity of grain boundaries in Cu(In,Ga)Se2 thin films. <i>Applied Physics A:</i> Materials Science and Processing, 2006 , 82, 1-7	2.6	76

348	Design of nanostructured plasmonic back contacts for thin-film silicon solar cells. <i>Optics Express</i> , 2011 , 19 Suppl 6, A1219-30	3.3	74	
347	Characterization and simulation of a-Si:H/ট-Si:H tandem solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2011 , 95, 3318-3327	6.4	74	
346	Reciprocity between electroluminescence and quantum efficiency used for the characterization of silicon solar cells. <i>Progress in Photovoltaics: Research and Applications</i> , 2009 , 17, 394-402	6.8	73	
345	Modeling extremely thin absorber solar cells for optimized design. <i>Progress in Photovoltaics:</i> Research and Applications, 2004 , 12, 573-591	6.8	73	
344	Resistive limitations to spatially inhomogeneous electronic losses in solar cells. <i>Applied Physics Letters</i> , 2004 , 85, 6010-6012	3.4	72	
343	Quantitative electroluminescence analysis of resistive losses in Cu(In, Ga)Se2 thin-film modules. <i>Solar Energy Materials and Solar Cells</i> , 2010 , 94, 979-984	6.4	71	
342	Formation of transparent and ohmic ZnO:Al/MoSe2 contacts for bifacial Cu(In,Ga)Se2 solar cells and tandem structures. <i>Thin Solid Films</i> , 2005 , 480-481, 67-70	2.2	70	
341	Classification of metastabilities in the electrical characteristics of ZnO/CdS/Cu(In,Ga)Se2 solar cells. <i>Thin Solid Films</i> , 2001 , 387, 147-150	2.2	70	
340	Influence of the selenium flux on the growth of Cu(In,Ga)Se2 thin films. <i>Thin Solid Films</i> , 2003 , 431-432, 31-36	2.2	67	
339	Impact of Small Phonon Energies on the Charge-Carrier Lifetimes in Metal-Halide Perovskites. Journal of Physical Chemistry Letters, 2018 , 9, 939-946	6.4	66	
338	Influence of the Built-in Voltage on the Fill Factor of Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 13258-13261	3.4	64	
337	Electro-optical modeling of bulk heterojunction solar cells. <i>Journal of Applied Physics</i> , 2008 , 104, 09451	3 2.5	63	
336	Analysis of short circuit current gains by an anti-reflective textured cover on silicon thin film solar cells. <i>Progress in Photovoltaics: Research and Applications</i> , 2013 , 21, 1672-1681	6.8	62	
335	Role of the CdS buffer layer as an active optical element in Cu(In,Ga)Se2 thin-film solar cells. <i>Progress in Photovoltaics: Research and Applications</i> , 2002 , 10, 457-463	6.8	62	
334	Quantitative analysis of the transient photoluminescence of CH3NH3PbI3/PC61BM heterojunctions by numerical simulations. <i>Sustainable Energy and Fuels</i> , 2018 , 2, 1027-1034	5.8	61	
333	Fermi level pinning at CdS/Cu(In,Ga)(Se,S)2 interfaces: effect of chalcopyrite alloy composition. <i>Journal of Physics and Chemistry of Solids</i> , 2003 , 64, 1591-1595	3.9	61	
332	Open Circuit Voltage Limitations in CuIn1\(\text{IGaxSe2 Thin-Film Solar Cells IDependence on Alloy Composition. } Physica Status Solidi A, 2000 , 179, R7-R8		61	
331	Impact of Na and S incorporation on the electronic transport mechanisms of Cu(In, Ga)Se2 solar cells. <i>Solid State Communications</i> , 1998 , 107, 59-63	1.6	60	

330	Numerical simulation of carrier collection and recombination at grain boundaries in Cu(In,Ga)Se2 solar cells. <i>Journal of Applied Physics</i> , 2008 , 103, 094523	2.5	58
329	Low-temperature a-Si:H/ZnO/Al back contacts for high-efficiency silicon solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2006 , 90, 1345-1352	6.4	57
328	Device Performance of Emerging Photovoltaic Materials (Version 1). <i>Advanced Energy Materials</i> , 2021 , 11, 2002774	21.8	56
327	Defects in Cu(In, Ga) Se2 semiconductors and their role in the device performance of thin-film solar cells 1997 , 5, 121-130		55
326	Compositional trends of defect energies, band alignments, and recombination mechanisms in the Cu(In,Ga)(Se,S)2 alloy system. <i>Thin Solid Films</i> , 2003 , 431-432, 158-162	2.2	55
325	Numerical simulation of grain boundary effects in Cu(In,Ga)Se2 thin-film solar cells. <i>Thin Solid Films</i> , 2005 , 480-481, 8-12	2.2	55
324	Modeling of spatially inhomogeneous solar cells by a multi-diode approach. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2005 , 202, 2920-2927	1.6	55
323	Material development for dye solar modules: results from an integrated approach. <i>Progress in Photovoltaics: Research and Applications</i> , 2008 , 16, 489-501	6.8	54
322	Three-dimensional photonic crystal intermediate reflectors for enhanced light-trapping in tandem solar cells. <i>Advanced Materials</i> , 2011 , 23, 3896-900	24	53
321	Finite mobility effects on the radiative efficiency limit of pn-junction solar cells. <i>Physical Review B</i> , 2008 , 77,	3.3	53
320	Rugate filter for light-trapping in solar cells. <i>Optics Express</i> , 2008 , 16, 9332-43	3.3	52
319	Photogeneration and carrier recombination in graded gap Cu(In, Ga)Se/sub 2/solar cells. <i>IEEE Transactions on Electron Devices</i> , 2000 , 47, 2249-2254	2.9	52
318	Directional selectivity and ultra-light-trapping in solar cells. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2008 , 205, 2831-2843	1.6	51
317	Cu(In,Ga)Se2 solar cells with a ZnSe buffer layer: interface characterization by quantum efficiency measurements 1999 , 7, 423-436		51
316	Effects of Thermochemical Treatment on CuSbS2 Photovoltaic Absorber Quality and Solar Cell Reproducibility. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 18377-18385	3.8	51
315	. IEEE Journal of Photovoltaics, 2012 , 2, 169-172	3.7	49
314	Decreasing Radiative Recombination Coefficients via an Indirect Band Gap in Lead Halide Perovskites. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 1265-1271	6.4	47
313	Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2008 , 205, 2811-2821	1.6	45

(2007-2015)

312	Application and modeling of an integrated amorphous silicon tandem based device for solar water splitting. <i>Solar Energy Materials and Solar Cells</i> , 2015 , 140, 275-280	6.4	44
311	Silicon heterojunction solar cell with amorphous silicon oxide buffer and microcrystalline silicon oxide contact layers. <i>Physica Status Solidi - Rapid Research Letters</i> , 2012 , 6, 193-195	2.5	44
310	Understanding Transient Photoluminescence in Halide Perovskite Layer Stacks and Solar Cells. <i>Advanced Energy Materials</i> , 2021 , 11, 2003489	21.8	44
309	Extracting Information about the Electronic Quality of Organic Solar-Cell Absorbers from Fill Factor and Thickness. <i>Physical Review Applied</i> , 2016 , 6,	4.3	44
308	Radiation resistance of Cu(In,Ga)Se2 solar cells under 1-MeV electron irradiation. <i>Thin Solid Films</i> , 2001 , 387, 228-230	2.2	43
307	Spectral dependence and Hall effect of persistent photoconductivity in polycrystalline Cu(In,Ga)Se2 thin films. <i>Journal of Applied Physics</i> , 2002 , 91, 5093-5099	2.5	43
306	Manipulating the Net Radiative Recombination Rate in Lead Halide Perovskite Films by Modification of Light Outcoupling. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 5084-5090	6.4	42
305	Disorder improves nanophotonic light trapping in thin-film solar cells. <i>Applied Physics Letters</i> , 2014 , 104, 131102	3.4	42
304	Optimized amorphous silicon oxide buffer layers for silicon heterojunction solar cells with microcrystalline silicon oxide contact layers. <i>Journal of Applied Physics</i> , 2013 , 113, 134501	2.5	42
303	Characterization of a-Si:HĒ-Si interfaces by effective-lifetime measurements. <i>Journal of Applied Physics</i> , 2005 , 98, 093711	2.5	42
302	Selection Metric for Photovoltaic Materials Screening Based on Detailed-Balance Analysis. <i>Physical Review Applied</i> , 2017 , 8,	4.3	41
301	Diffusion Limitations to I[sub 3][sup I]/I[sup I]Electrolyte Transport Through Nanoporous TiO[sub 2] Networks. <i>Electrochemical and Solid-State Letters</i> , 2003 , 6, E11		40
300	Silicon solar cell of 16.8 h thickness and 14.7% efficiency. <i>Applied Physics Letters</i> , 1993 , 62, 2998-3000	3.4	40
299	Advanced large area characterization of thin-film solar modules by electroluminescence and thermography imaging techniques. <i>Solar Energy Materials and Solar Cells</i> , 2015 , 135, 35-42	6.4	38
298	Defect annealing in Cu(In,Ga)Se2 heterojunction solar cells after high-energy electron irradiation. <i>Applied Physics Letters</i> , 2001 , 79, 2922-2924	3.4	38
297	Recovery of scaler time-delay systems from time series. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1996 , 211, 345-349	2.3	38
296	Preparation and measurement of highly efficient a-Si:H single junction solar cells and the advantages of E-SiOx:H n-layers. <i>Progress in Photovoltaics: Research and Applications</i> , 2015 , 23, 939-948	6.8	37
295	Carrier collection in Cu(In,Ga)Se2 solar cells with graded band gaps and transparent ZnO:Al back contacts. <i>Solar Energy Materials and Solar Cells</i> , 2007 , 91, 689-695	6.4	37

294	Note on the interpretation of electroluminescence images using their spectral information. <i>Solar Energy Materials and Solar Cells</i> , 2008 , 92, 1621-1627	6.4	37
293	Classification of spontaneous oscillations at the onset of avalanche breakdown in p-type germanium. <i>Physical Review B</i> , 1991 , 43, 2255-2262	3.3	37
292	Development of Thin Film Amorphous Silicon Tandem Junction Based Photocathodes Providing High Open-Circuit Voltages for Hydrogen Production. <i>International Journal of Photoenergy</i> , 2014 , 2014, 1-10	2.1	36
291	Wide Gap Microcrystalline Silicon Oxide Emitter for a-SiOx:H/c-Si Heterojunction Solar Cells. <i>Japanese Journal of Applied Physics</i> , 2013 , 52, 122304	1.4	36
290	Metastable electrical transport in Cu(In,Ga)Se2 thin films and ZnO/CdS/Cu(In,Ga)Se2 heterostructures. <i>Physics Letters, Section A: General, Atomic and Solid State Physics,</i> 1998 , 245, 489-493	2.3	36
289	Improvement of photon collection in Cu(In,Ga)Se2 solar cells and modules by fluorescent frequency conversion. <i>Thin Solid Films</i> , 2007 , 515, 5964-5967	2.2	36
288	Efficiency limits of Si/SiO2 quantum well solar cells from first-principles calculations. <i>Journal of Applied Physics</i> , 2009 , 105, 104511	2.5	35
287	Influence of damp heat on the electrical properties of Cu(In,Ga)Se2 solar cells. <i>Thin Solid Films</i> , 2000 , 361-362, 283-287	2.2	35
286	Statistics of the Auger Recombination of Electrons and Holes via Defect Levels in the Band Gap-Application to Lead-Halide Perovskites. <i>ACS Omega</i> , 2018 , 3, 8009-8016	3.9	34
285	a-Si:H/µc-Si:H tandem junction based photocathodes with high open-circuit voltage for efficient hydrogen production. <i>Journal of Materials Research</i> , 2014 , 29, 2605-2614	2.5	34
284	Method to extract diffusion length from solar cell parameters Application to polycrystalline silicon. <i>Journal of Applied Physics</i> , 2003 , 93, 5447-5455	2.5	34
283	Field-dependent exciton dissociation in organic heterojunction solar cells. <i>Physical Review B</i> , 2012 , 85,	3.3	32
282	20屆% efficient silicon solar cell with a low temperature rear side process using laser-fired contacts. <i>Progress in Photovoltaics: Research and Applications</i> , 2006 , 14, 653-662	6.8	31
281	Electrical characterisation of dye sensitised nanocrystalline TiO2 solar cells with liquid electrolyte and solid-state organic hole conductor. <i>Thin Solid Films</i> , 2002 , 403-404, 242-246	2.2	31
280	A model for the open circuit voltage relaxation in Cu(In,Ga)Se2heterojunction solar cells. <i>EPJ Applied Physics</i> , 1999 , 8, 43-52	1.1	31
279	Reciprocity between Charge Injection and Extraction and Its Influence on the Interpretation of Electroluminescence Spectra in Organic Solar Cells. <i>Physical Review Applied</i> , 2016 , 5,	4.3	30
278	Analysis of sub-stoichiometric hydrogenated silicon oxide films for surface passivation of crystalline silicon solar cells. <i>Journal of Applied Physics</i> , 2012 , 112, 054905	2.5	30
277	Influence of heterointerfaces on the performance of Cu(In,Ga)Se2 solar cells with CdS and In(OHx,Sy) buffer layers. <i>Thin Solid Films</i> , 2003 , 431-432, 330-334	2.2	30

(2017-1988)

276	Determination of electric transport properties in the pre- and post-breakdown regime ofp-germanium. <i>European Physical Journal B</i> , 1988 , 72, 225-233	1.2	30
275	The role of structural properties and defects for the performance of Cu-chalcopyrite-based thin-film solar cells. <i>Physica B: Condensed Matter</i> , 2001 , 308-310, 1081-1085	2.8	29
274	Classification of current instabilities during low-temperature breakdown in germanium. <i>Applied Physics A: Solids and Surfaces</i> , 1989 , 48, 155-160		29
273	A silicon carbide-based highly transparent passivating contact for crystalline silicon solar cells approaching efficiencies of 24%. <i>Nature Energy</i> , 2021 , 6, 529-537	62.3	29
272	Nanoscale observation of waveguide modes enhancing the efficiency of solar cells. <i>Nano Letters</i> , 2014 , 14, 6599-605	11.5	28
271	Photoluminescence Analysis of Thin-Film Solar Cells 2011 , 151-175		28
270	Interface Optimization via Fullerene Blends Enables Open-Circuit Voltages of 1.35 [®] in CH3NH3Pb(I0.8Br0.2)3 Solar Cells. <i>Advanced Energy Materials</i> , 2021 , 11, 2003386	21.8	28
269	Enhanced light trapping in thin-film solar cells by a directionally selective filter. <i>Optics Express</i> , 2010 , 18 Suppl 2, A133-8	3.3	27
268	Texture of Cu(In,Ga)Se2thin films and nanoscale cathodoluminescence. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, S85-S89	1.8	27
267	The detailed balance principle and the reciprocity theorem between photocarrier collection and dark carrier distribution in solar cells. <i>Journal of Applied Physics</i> , 1998 , 84, 6412-6418	2.5	27
266	Exemplary locking sequence during self-generated quasiperiodicity of extrinsic germanium. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1987 , 124, 335-339	2.3	27
265	Light-induced degradation of adapted quadruple junction thin film silicon solar cells for photoelectrochemical water splitting. <i>Solar Energy Materials and Solar Cells</i> , 2016 , 145, 142-147	6.4	26
264	Solution-Based Silicon in Thin-Film Solar Cells. Advanced Energy Materials, 2014, 4, 1301871	21.8	26
263	Characterization of the CdS/Cu(In,Ga)Se2 interface by electron beam induced currents. <i>Thin Solid Films</i> , 2007 , 515, 6163-6167	2.2	26
262	Diffusion-limited transport of I- 3 through nanoporous TiO2-polymer gel networks. <i>Journal of Chemical Physics</i> , 2004 , 121, 11374-8	3.9	26
261	Device Analysis of Cu(In,Ga)Se2 Heterojunction Solar Cells - Some Open Questions. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 668, 1		26
260	Direct observation of a scaling effect on effective minority carrier lifetimes. <i>Journal of Applied Physics</i> , 1994 , 76, 4168-4172	2.5	25
259	Understanding the energy yield of photovoltaic modules in different climates by linear performance loss analysis of the module performance ratio. <i>IET Renewable Power Generation</i> , 2017 , 11, 558-565	2.9	25

258	Development towards cell-to-cell monolithic integration of a thin-film solar cell and lithium-ion accumulator. <i>Journal of Power Sources</i> , 2016 , 327, 340-344	8.9	25
257	Solar hydrogen production: a bottom-up analysis of different photovoltaic lectrolysis pathways. <i>Sustainable Energy and Fuels</i> , 2019 , 3, 801-813	5.8	24
256	Capacitance Spectroscopy of Thin-Film Solar Cells 2011 , 81-105		24
255	Closed-form expression for the current/voltage characteristics of pin solar cells. <i>Applied Physics A: Materials Science and Processing</i> , 2003 , 77, 865-871	2.6	24
254	Cu(In,Ga)Se2 SOLAR CELLS. Series on Photoconversion of Solar Energy, 2001 , 277-345		24
253	Solar water splitting with earth-abundant materials using amorphous silicon photocathodes and Al/Ni contacts as hydrogen evolution catalyst. <i>Chemical Physics Letters</i> , 2015 , 638, 25-30	2.5	23
252	Recombination and resistive losses at ZnOB-Si:HD-Si interfaces in heterojunction back contacts for Si solar cells. <i>Journal of Applied Physics</i> , 2007 , 102, 094507	2.5	23
251	Nucleation and growth of current filaments in semiconductors. <i>Journal of Applied Physics</i> , 1990 , 67, 14	112:541	6 23
250	Wet-Chemical Preparation of Silicon Tunnel Oxides for Transparent Passivated Contacts in Crystalline Silicon Solar Cells. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> 10, 14259-14263	9.5	22
249	Optical design of spectrally selective interlayers for perovskite/silicon heterojunction tandem solar cells. <i>Optics Express</i> , 2018 , 26, A750-A760	3.3	22
248	Charge Carrier Collection and Contact Selectivity in Solar Cells. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1900252	4.6	22
247	Effect of localized states on the reciprocity between quantum efficiency and electroluminescence in Cu(In,Ga)Se2 and Si thin-film solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2014 , 129, 95-103	6.4	22
246	Illumination intensity and spectrum-dependent performance of thin-film silicon single and multijunction solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2017 , 159, 427-434	6.4	22
245	Matching of Silicon Thin-Film Tandem Solar Cells for Maximum Power Output. <i>International Journal of Photoenergy</i> , 2013 , 2013, 1-7	2.1	22
244	Band alignments in the Cu(In,Ga)(S,Se)2 alloy system determined from deep-level defect energies. <i>Applied Physics A: Materials Science and Processing</i> , 2001 , 73, 769-772	2.6	22
243	Analysis of internal quantum efficiency and a new graphical evaluation scheme. <i>Solid-State Electronics</i> , 1995 , 38, 1009-1015	1.7	22
242	Dynamics of current filaments in p-type germanium under the influence of a transverse magnetic field. <i>Journal of Applied Physics</i> , 1991 , 70, 232-235	2.5	22
241	Microscopic Perspective on Photovoltaic Reciprocity in Ultrathin Solar Cells. <i>Physical Review Letters</i> , 2017 , 118, 247702	7.4	21

(2009-2008)

240	Influence of base pressure and atmospheric contaminants on a-Si:H solar cell properties. <i>Journal of Applied Physics</i> , 2008 , 104, 094507	2.5	21
239	Effective diffusion lengths for minority carriers in solar cells as determined from internal quantum efficiency analysis. <i>Journal of Applied Physics</i> , 1999 , 85, 3634-3637	2.5	21
238	Imaging of spatio-temporal structures in semiconductors. <i>Solid-State Electronics</i> , 1989 , 32, 1365-1369	1.7	21
237	Observation of a Large-Scale Sheetlike Current Filament in a Thinn-GaAs Layer. <i>Journal of the Physical Society of Japan</i> , 1990 , 59, 420-423	1.5	21
236	Spatio-temporal instabilities in the electric breakdown of p-germanium. <i>Solid-State Electronics</i> , 1988 , 31, 817-820	1.7	21
235	What is a deep defect? Combining Shockley-Read-Hall statistics with multiphonon recombination theory. <i>Physical Review Materials</i> , 2020 , 4,	3.2	21
234	Field Emission at Grain Boundaries: Modeling the Conductivity in Highly Doped Polycrystalline Semiconductors. <i>Physical Review Applied</i> , 2016 , 5,	4.3	20
233	On the thermodynamics of light trapping in solar cells. <i>Nature Materials</i> , 2014 , 13, 103-4	27	20
232	Photocurrent collection efficiency mapping of a silicon solar cell by a differential luminescence imaging technique. <i>Applied Physics Letters</i> , 2014 , 105, 163507	3.4	20
231	Advancing tandem solar cells by spectrally selective multilayer intermediate reflectors. <i>Optics Express</i> , 2014 , 22 Suppl 5, A1270-7	3.3	20
230	Reverse biased electroluminescence spectroscopy of crystalline silicon solar cells with high spatial resolution. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2010 , 207, 2597-2600	1.6	20
229	Spatial inhomogeneities in Cu(In,Ga)Se2 solar cells analyzed by an electron beam induced voltage technique. <i>Journal of Applied Physics</i> , 2006 , 100, 124501	2.5	20
228	Highly resistive Cu(In,Ga)Se2 absorbers for improved low-irradiance performance of thin-film solar cells. <i>Thin Solid Films</i> , 2004 , 451-452, 160-165	2.2	20
227	Critical Dynamics near the Onset of Spontaneous Oscillations in p -Germanium. <i>Europhysics Letters</i> , 1989 , 9, 743-748	1.6	20
226	Quantifying the Absorption Onset in the Quantum Efficiency of Emerging Photovoltaic Devices. <i>Advanced Energy Materials</i> , 2021 , 11, 2100022	21.8	20
225	Front contact optimization for rear-junction SHJ solar cells with ultra-thin n-type nanocrystalline silicon oxide. <i>Solar Energy Materials and Solar Cells</i> , 2020 , 209, 110471	6.4	19
224	Performance stability of photovoltaic modules in different climates. <i>Progress in Photovoltaics: Research and Applications</i> , 2017 , 25, 968-981	6.8	19
223	Evaluation of electron beam induced current profiles of Cu(In,Ga)Se2 solar cells with different Ga-contents. <i>Thin Solid Films</i> , 2009 , 517, 2357-2359	2.2	19

222	Reply to Comments on Electronic Transport in Dye-Sensitized Nanoporous TiO2 Solar CellsComparison of Electrolyte and Solid-State DevicesIIOn the Photovoltaic Action in pn-Junction and Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 13547-13550	3.4	19
221	Sodium induced secondary phase segregations in CuGaSe2 thin films. <i>Journal of Crystal Growth</i> , 2001 , 233, 13-21	1.6	19
220	Internal quantum efficiency of thin epitaxial silicon solar cells. Applied Physics Letters, 1995, 66, 1261-12	634	19
219	Evidence of Type-III Intermittency in the Electric Breakdown of p -Type Germanium. <i>Europhysics Letters</i> , 1991 , 14, 1-6	1.6	19
218	Localized plasmonic losses at metal back contacts of thin-film silicon solar cells 2010,		18
217	Air-Annealing Effects on Polycrystalline Cu(In,Ga)Se2 Heterojunctions. <i>Solid State Phenomena</i> , 1999 , 67-68, 409-414	0.4	18
216	Electron-beam induced instability during filamentary current transport inn-GaAs. <i>European Physical Journal B</i> , 1990 , 81, 53-58	1.2	18
215	Modeling and practical realization of thin film silicon-based integrated solar water splitting devices. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2016 , 213, 1738-1746	1.6	18
214	Influence of the operating temperature on the performance of silicon based photoelectrochemical devices for water splitting. <i>Materials Science in Semiconductor Processing</i> , 2016 , 42, 142-146	4.3	17
213	Defect passivation by hydrogen reincorporation for silicon quantum dots in SiC/SiOx hetero-superlattice. <i>Journal of Non-Crystalline Solids</i> , 2012 , 358, 2145-2149	3.9	17
212	A multi-diode model for spatially inhomogeneous solar cells. <i>Thin Solid Films</i> , 2005 , 487, 14-18	2.2	17
211	Grain Boundary Recombination in Thin-Film Silicon Solar Cells. <i>Solid State Phenomena</i> , 2001 , 80-81, 299-	30 <u>4</u>	17
2 10	Band offset variations at Ge/GaAs (100) interfaces. <i>Applied Physics Letters</i> , 1993 , 62, 261-263	3.4	17
209	Self-Organized Critical Behaviour in the Low-Temperature Impact Ionization Breakdown of p-Ge. <i>Europhysics Letters</i> , 1990 , 12, 423-428	1.6	17
208	Device Performance of Emerging Photovoltaic Materials (Version 2). Advanced Energy Materials,210252	6 21.8	17
207	Photoluminescence Analysis of Thin-Film Solar Cells 2016 , 275-297		16
206	Injection and Collection Diffusion Lengths of Polycrystalline Thin-Film Solar Cells. <i>Solid State Phenomena</i> , 1999 , 67-68, 81-88	0.4	16
205	Impact ionization avalanche breakdown in short crystal regions of p-Ge. <i>Journal of Applied Physics</i> , 1990 , 67, 2980-2984	2.5	16

204	Silicon quantum dot formation in SiC/SiOx hetero-superlattice. Energy Procedia, 2011, 10, 249-254	2.3	15
203	Charge carrier transport via defect states in Cu(In,Ga)Se2 thin films and Cu(In,Ga)Se2/CdS/ZnO heterojunctions. <i>Physical Review B</i> , 2000 , 61, 16052-16059	3.3	15
202	Efficient Area Matched Converter Aided Solar Charging of Lithium Ion Batteries Using High Voltage Perovskite Solar Cells. <i>ACS Applied Energy Materials</i> , 2020 , 3, 431-439	6.1	15
201	Transient phenomena in Cu(In,Ga)Se2 solar modules investigated by electroluminescence imaging. <i>Thin Solid Films</i> , 2013 , 535, 307-310	2.2	14
200	High band gap Cu(In,Ga)Se2 solar cells and modules prepared with in-line co-evaporation. <i>Thin Solid Films</i> , 2003 , 431-432, 543-547	2.2	14
199	Notizen: Comparison Between a Generic Reaction- Diffusion Model and a Synergetic Semiconductor System. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1987 , 42, 655-656	1.4	14
198	How Contact Layers Control Shunting Losses from Pinholes in Thin-Film Solar Cells. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 27263-27272	3.8	14
197	Poly-Si/SiOx/c-Si passivating contact with 738 mV implied open circuit voltage fabricated by hot-wire chemical vapor deposition. <i>Applied Physics Letters</i> , 2019 , 114, 153901	3.4	13
196	Plasmonic back contacts with non-ordered Ag nanostructures for light trapping in thin-film silicon solar cells. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2013 , 178, 630-634	3.1	13
195	Optical simulations of microcrystalline silicon solar cells applying plasmonic reflection grating back contacts. <i>Journal of Photonics for Energy</i> , 2012 , 2, 027002	1.2	13
194	Analysis of the series resistance in pin-type thin-film silicon solar cells. <i>Journal of Applied Physics</i> , 2013 , 113, 134503	2.5	13
193	Analysis of recombination centers in epitaxial silicon thin-film solar cells by temperature-dependent quantum efficiency measurements. <i>Applied Physics Letters</i> , 2003 , 82, 2637-263	₃ ⊶34	13
192	Transparent silicon carbide/tunnel SiO2 passivation for c-Si solar cell front side: Enabling Jsc > 42 mA/cm2 and iVoc of 742 mV. <i>Progress in Photovoltaics: Research and Applications</i> , 2020 , 28, 321-327	6.8	12
191	Compatibility study towards monolithic self-charging power unit based on all-solid thin-film solar module and battery. <i>Journal of Power Sources</i> , 2017 , 365, 303-307	8.9	12
190	Shunt mitigation in ZnO:Al/i-ZnO/CdS/Cu(In,Ga)Se2 solar modules by the i-ZnO/CdS buffer combination. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2015 , 212, 541-546	1.6	12
189	Control of secondary phase segregations during CuGaSe2 thin-film growth. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2002 , 20, 1247-1253	2.9	12
188	Photoelectrochemical application of thin-film silicon triple-junction solar cell in batteries. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2016 , 213, 1926-1931	1.6	11
187	Linking structural properties with functionality in solar cell materials I the effective mass and effective density of states. <i>Sustainable Energy and Fuels</i> , 2018 , 2, 1550-1560	5.8	11

186	Effect of light soaking on the electro- and photoluminescence of Cu(In,Ga)Se2 solar cells. <i>Applied Physics Letters</i> , 2013 , 103, 183504	3.4	11
185	On the geometry of plasmonic reflection grating back contacts for light trapping in prototype amorphous silicon thin-film solar cells. <i>Journal of Photonics for Energy</i> , 2014 , 5, 057004	1.2	11
184	Modelling of photo- and electroluminescence of hydrogenated microcrystalline silicon solar cells. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2012 , 9, 1963-1967		11
183	Fundamental Electrical Characterization of Thin-Film Solar Cells 2011 , 33-60		11
182	Quantum efficiency and admittance spectroscopy on Cu(In,Ga)Se2 solar cells. <i>Solar Energy Materials and Solar Cells</i> , 1998 , 50, 79-85	6.4	11
181	CuGaSe2-based superstrate solar cells. <i>Thin Solid Films</i> , 2001 , 387, 74-76	2.2	11
180	Circuit-limited oscillation at the onset of avalanche breakdown in semiconductors. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1990 , 147, 229-233	2.3	11
179	Optimization of Transparent Passivating Contact for Crystalline Silicon Solar Cells. <i>IEEE Journal of Photovoltaics</i> , 2020 , 10, 46-53	3.7	11
178	A Bias-Free, Stand-Alone, and Scalable Photovoltaic Electrochemical Device for Solar Hydrogen Production. <i>Advanced Sustainable Systems</i> , 2020 , 4, 2000070	5.9	10
177	Novel series connection concept for thin film solar modules. <i>Progress in Photovoltaics: Research and Applications</i> , 2013 , 21, 972-979	6.8	10
176	Collection and conversion properties of photovoltaic fluorescent collectors with photonic band stop filters 2006 ,		10
175	Structural and Electronic Properties of Polycrystalline Cu(In,Ga)(S,Se)2 Alloys. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 668, 1		10
174	Nonequilibrium phase transition in the electronic transport of p-type germanium at low temperatures. <i>Physical Review B</i> , 1990 , 42, 9019-9024	3.3	10
173	How solar cell efficiency is governed by the product. <i>Physical Review Research</i> , 2020 , 2,	3.9	10
172	Influence of Room Temperature Sputtered Al-Doped Zinc Oxide on Passivation Quality in Silicon Heterojunction Solar Cells. <i>IEEE Journal of Photovoltaics</i> , 2019 , 9, 1485-1491	3.7	9
171	Effect of reabsorption and photon recycling on photoluminescence spectra and transients in lead-halide perovskite crystals. <i>JPhys Materials</i> , 2020 , 3, 025003	4.2	9
170	Angular dependence of light trapping in nanophotonic thin-film solar cells. <i>Optics Express</i> , 2015 , 23, A1	535-88	3 9
169	Quantitative evaluation method for electroluminescence images of a-Si:H thin-film solar modules. <i>Physica Status Solidi - Rapid Research Letters</i> , 2013 , 7, 627-630	2.5	9

168	Ray tracing for the optics at nano-textured ZnOBir and ZnOBilicon interfaces. <i>Progress in Photovoltaics: Research and Applications</i> , 2011 , 19, 724-732	6.8	9
167	Charge separation in excitonic and bipolar solar cells 🖪 detailed balance approach. <i>Thin Solid Films</i> , 2008 , 516, 7144-7148	2.2	9
166	Consequence of 3-MeV electron irradiation on the photovoltaic output parameters of Cu(In,Ga)Se2 solar cells. <i>Thin Solid Films</i> , 2003 , 431-432, 453-456	2.2	9
165	Illumination-induced recovery of Cu(In,Ga)Se2 solar cells after high-energy electron irradiation. <i>Applied Physics Letters</i> , 2003 , 82, 1410-1412	3.4	9
164	Reconstruction of traveling waves in semi-insulating GaAs. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1991 , 152, 356-360	2.3	9
163	The Ideality of Spatially Inhomogeneous Schottky Contacts. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 260, 245		9
162	Switching behavior of current filaments inp-germanium connected in parallel. <i>European Physical Journal B</i> , 1988 , 71, 305-310	1.2	9
161	Transparent-conductive-oxide-free front contacts for high-efficiency silicon heterojunction solar cells. <i>Joule</i> , 2021 , 5, 1535-1547	27.8	9
160	Measurement and modeling of reverse biased electroluminescence in multi-crystalline silicon solar cells. <i>Journal of Applied Physics</i> , 2013 , 114, 134509	2.5	8
159	Hydrogen Effusion Experiments 2011 , 449-475		8
158	One-Dimensional Electro-Optical Simulations of Thin-Film Solar Cells 2011 , 501-527		8
157	Time constants of open circuit voltage relaxation in Cu(In,Ga)Se2 solar cells. <i>Thin Solid Films</i> , 2007 , 515, 6243-6245	2.2	8
156	Minority carrier collection in CuGaSe2 solar cells. <i>Thin Solid Films</i> , 2004 , 451-452, 430-433	2.2	8
155	Low-resistivity p-type a-Si:H/AZO hole contact in high-efficiency silicon heterojunction solar cells. <i>Applied Surface Science</i> , 2021 , 542, 148749	6.7	8
154	Wide gap microcrystalline silicon carbide emitter for amorphous silicon oxide passivated heterojunction solar cells. <i>Japanese Journal of Applied Physics</i> , 2017 , 56, 022302	1.4	7
153	Application of Raman spectroscopy for depth-dependent evaluation of the hydrogen concentration of amorphous silicon. <i>Thin Solid Films</i> , 2018 , 653, 223-228	2.2	7
152	Impact of doped microcrystalline silicon oxide layers on crystalline silicon surface passivation. <i>Canadian Journal of Physics</i> , 2014 , 92, 758-762	1.1	7

150	Investigation of laser scribing of a-Si:H from the film side for solar modules using a UV laser with ns pulses. <i>Applied Physics A: Materials Science and Processing</i> , 2011 , 105, 355-362	2.6	7
149	Structure and electronic properties of E-SiC:H for photovoltaic applications. <i>Journal of Physics: Conference Series</i> , 2011 , 326, 012019	0.3	7
148	Response to Comment on Efficiency limits of photovoltaic fluorescent collectors[Appl. Phys. Lett. 87, 171101 (2005)][Applied Physics Letters, 2006 , 88, 176102	3.4	7
147	Two-Dimensional Simulations of Microcrystalline Silicon Solar Cells. <i>Solid State Phenomena</i> , 2001 , 80-81, 311-316	0.4	7
146	Electronically active defects in CuGaSe 2 -based heterojunction solar cells. <i>Thin Solid Films</i> , 2000 , 361-362, 415-419	2.2	7
145	Analysis of Cu(In,Ga)Se2 thin-film modules by electro-modulated luminescence. <i>Journal of Applied Physics</i> , 2016 , 119, 095704	2.5	7
144	Imaging photocurrent collection losses in solar cells. <i>Applied Physics Letters</i> , 2016 , 109, 223502	3.4	7
143	From room to roof: How feasible is direct coupling of solar-battery power unit under variable irradiance?. <i>Solar Energy</i> , 2020 , 206, 732-740	6.8	6
142	Hydrogen Effusion Experiments 2016 , 569-595		6
141	Defect Diagnostics of Scribing Failures and Cu-Rich Debris in Cu(In,Ga)Se\$_2\$ Thin-Film Solar Modules With Electroluminescence and Thermography. <i>IEEE Journal of Photovoltaics</i> , 2015 , 5, 1179-118	3 ^{3.7}	6
140	Annealing induced defects in SiC, SiOx single layers, and SiC/SiOx hetero-superlattices. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2012 , 209, 1960-1964	1.6	6
139	Electrical characterization of P3 isolation lines patterned with a UV laser incident from the film side on thin-film silicon solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2013 , 108, 87-92	6.4	6
138	Electroluminescence Analysis of Solar Cells and Solar Modules 2011 , 61-80		6
137	Influence of built-in voltage in optimized extremely thin absorber solar cells. <i>Thin Solid Films</i> , 2005 , 480-481, 447-451	2.2	6
136	Role of Defects and Defect Metastabilities for the Performance and Stability of Cu(In,Ga)Se2Based Solar Cells. <i>Japanese Journal of Applied Physics</i> , 2000 , 39, 389	1.4	6
135	Heterojunctions for Polycrystalline Silicon Solar Cells. <i>Solid State Phenomena</i> , 1999 , 67-68, 571-576	0.4	6
134	Bifunctional CoFeVOx Catalyst for Solar Water Splitting by using Multijunction and Heterojunction Silicon Solar Cells. <i>Advanced Materials Technologies</i> , 2020 , 5, 2000592	6.8	6
133	Mechanism for crystalline Si surface passivation by the combination of SiO2 tunnel oxide and []c-SiC:H thin film. <i>Physica Status Solidi - Rapid Research Letters</i> , 2016 , 10, 233-236	2.5	6

132	Influence of Oxygen on Sputtered Titanium-Doped Indium Oxide Thin Films and Their Application in Silicon Heterojunction Solar Cells. <i>Solar Rrl</i> , 2021 , 5, 2000501	7.1	6
131	Defect tolerant device geometries for lead-halide perovskites. <i>Materials Advances</i> , 2021 , 2, 3655-3670	3.3	6
130	Improved Infrared Light Management with Transparent Conductive Oxide/Amorphous Silicon Back Reflector in High-Efficiency Silicon Heterojunction Solar Cells. <i>Solar Rrl</i> , 2021 , 5, 2000576	7.1	6
129	Deposition of intrinsic hydrogenated amorphous silicon for thin-film solar cells to comparative study for layers grown statically by RF-PECVD and dynamically by VHF-PECVD. <i>Progress in Photovoltaics: Research and Applications</i> , 2014 , 22, 198-207	6.8	5
128	Modeling charge carrier collection in multiple exciton generating PbSe quantum dots. <i>Thin Solid Films</i> , 2009 , 517, 2438-2442	2.2	5
127	High-Energy Electron and Proton Irradiation of Cu(In,Ga)Se2 Heterojunction Solar Cells. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 668, 1		5
126	Influence of Na and S incorporation on the electronic transport properties of Cu(In,Ga)Se/sub 2/solar cells 1996 ,		5
125	Numerical simulation of innovative device structures for silicon thin-film solar cells 1996,		5
124	Resonant imaging of a critical dynamical state in the low-temperature electric transport of p-Ge. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1991 , 153, 385-389	2.3	5
123	Barrier Inhomogeneities at Schottky Contacts: Curved Richardson Plots, Idealities, and Flat Band Barriers. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 260, 311		5
122	On the Scaling of Type-1 Intermittency in a Semiconductor Experiment. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1991 , 46, 1012-1014	1.4	5
121	Luminescence Analysis of Charge-Carrier Separation and Internal Series-Resistance Losses in Cu(In,Ga)Se2 Solar Cells. <i>Physical Review Applied</i> , 2020 , 14,	4.3	5
120	Development of a Transparent Passivated Contact as a Front Side Contact for Silicon Heterojunction Solar Cells 2018 ,		5
119	Cu(In,Ga)Se2 Solar Cells: Device Stability Based on Chemical Flexibility 1999 , 11, 957		5
118	Analysis of the light-induced degradation of differently matched tandem solar cells with and without an intermediate reflector using the Power Matching Method. <i>Solar Energy Materials and Solar Cells</i> , 2015 , 143, 1-8	6.4	4
117	Direct analysis of the current density vs. voltage curves of a CdTe module during outdoor exposure. <i>Solar Energy</i> , 2015 , 113, 88-100	6.8	4
116	. IEEE Journal of Photovoltaics, 2018 , 8, 272-277	3.7	4
115	Capacitance Spectroscopy of Thin-Film Solar Cells 2016 , 93-119		4

114	Post passivation light trapping back contacts for silicon heterojunction solar cells. <i>Nanoscale</i> , 2016 , 8, 18726-18733	·7	4
113	Pronounced Surface Band Bending of Thin-Film Silicon Revealed by Modeling Core Levels Probed with Hard X-rays. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 17685-93	.5	4
112	In Situ-Doped Silicon Thin Films for Passivating Contacts by Hot-Wire Chemical Vapor Deposition with a High Deposition Rate of 42 nm/min. <i>ACS Applied Materials & Deposition Rate of 42 nm/min. ACS Applied Mater</i>	ŀ5	4
111	Cu(In,Ga)Se2 Thin-Film Solar Cells 2013 , 261-304		4
110	Approaching Solar-Grade a-Si:H for Photovoltaic Applications via Atmospheric Pressure CVD Using a Trisilane-Derived Liquid Precursor. <i>Solar Rrl</i> , 2017 , 1, 1700030	'.1	4
109	Current Concepts for Optical Path Enhancement in Solar Cells 2015 , 1-20		4
108	Fluorescent Concentrators for Photovoltaic Applications 2015 , 283-321		4
107	A new 2D model for the electrical potential in a cell stripe in thin-film solar modules including local defects. <i>Progress in Photovoltaics: Research and Applications</i> , 2015 , 23, 331-339	5.8	4
106	Spectrally selective intermediate reflectors for tandem thin-film silicon solar cells 2013,		4
105	Annealing studies of substoichiometric amorphous SiOx layers for c-Si surface passivation. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2010 , 7, NA-NA		4
104	Directional selectivity and light-trapping in solar cells 2008,		4
103	Recombination Mechanisms in Cu(In,Ga)(Se,S)2 Solar Cells. <i>Springer Series in Materials Science</i> , 2006 , 91-13	1.9	4
102	Glass Frit Sealed Dye Solar Modules with Adaptable Screen Printed Design 2006,		4
101	Recombination and Resistive Losses in Amorphous Silicon / Crystalline Silicon Heterojunction Solar Cells. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 609, 1311		4
100	Barrier Inhomogeneities Dominating Low-Frequency Excess Noise of Schottky Contacts. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 260, 305		4
99	Nascent states of current filamentation in semiconductors governed by negative differential resistance. <i>Solid State Communications</i> , 1990 , 73, 369-372	.6	4
98	Role of Surface Band Gap Widening in Cu(In, Ga)(Se, S)2 Thin-Films for the Photovoltaic Performance of ZnO/CdS/Cu(In, Ga)(Se, S)2 Heterojunction Solar Cells. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 763, 881		4
97	Schottky Contacts on Silicon. <i>Springer Series in Electrophysics</i> , 1994 , 89-148		4

96	Spatio ITemporal Correlations in Semiconductors 1991 , 145-176		4
95	Reply to Beal solar cell efficiencies Nature Photonics, 2021, 15, 165-166	33.9	4
94	Storage batteries in photovoltaic lectrochemical device for solar hydrogen production. <i>Journal of Power Sources</i> , 2021 , 509, 230367	8.9	4
93	Multilayer Capacitances: How Selective Contacts Affect Capacitance Measurements of Perovskite Solar Cells 2022 , 1,		4
92	Bandgap imaging in Cu(In,Ga)Se2 photovoltaic modules by electroluminescence. <i>Progress in Photovoltaics: Research and Applications</i> , 2017 , 25, 184-191	6.8	3
91	Nanoscale Investigation of Polarization-Dependent Light Coupling to Individual Waveguide Modes in Nanophotonic Thin-Film Solar Cells. <i>IEEE Journal of Photovoltaics</i> , 2015 , 5, 1523-1527	3.7	3
90	In Situ Real-Time Characterization of Thin-Film Growth 2016 , 441-467		3
89	Electron Microscopy on Thin Films for Solar Cells 2016 , 371-420		3
88	Fundamental Electrical Characterization of Thin-Film Solar Cells 2016 , 41-69		3
87	Electroluminescence Analysis of Solar Cells and Solar Modules 2016 , 71-92		3
86	Optically active defects in SiC, SiOx single layers and SiC/SiOx hetero-superlattices. <i>Solar Energy Materials and Solar Cells</i> , 2014 , 129, 3-6	6.4	3
85	Cu(In,Ga)Se2 Thin-Film Solar Cells 2012 , 323-371		3
84	Introduction to Thin-Film Photovoltaics 2011 , 1-32		3
83	Two- and Three-Dimensional Electronic Modeling of Thin-Film Solar Cells 2011 , 529-540		3
82	Electroluminescence imaging of Cu(In,Ga)Se2 thin film solar modules. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1165, 1		3
81	New aspects of phase segregation and junction formation in CulnSe/sub 2/		3
80	Metastable changes of the electrical transport properties of Cu(In,Ga)Se/sub 2/		3
79	Transport analysis for polycrystalline silicon solar cells on glass substrates		3

78	Quantification of Light Trapping Using a Reciprocity Between Electroluminescent Emission and Photovoltaic Action in a Solar Cell. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1101, 1		3
77	A Simple Method to Extract the Diffusion Length from the Output Parameters of Solar Cells - Application to Polycrystalline Silicon. <i>Solid State Phenomena</i> , 2003 , 93, 399-404	0.4	3
76	Band gap fluctuations in Cu(In,Ga)Se2 thin films. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 865, 1641		3
75	Two-dimensional simulation of thin-film silicon solar cells with innovative device structures 1999 , 7, 85-	100	3
74	Photon Tunneling in Tandem Solar Cells With Intermediate Reflector. <i>IEEE Journal of Photovoltaics</i> , 2016 , 6, 597-603	3.7	3
73	Phosphorus Catalytic Doping on Intrinsic Silicon Thin Films for the Application in Silicon Heterojunction Solar Cells. <i>ACS Applied Materials & Discrete Solar Cells</i> , 12, 56615-56621	9.5	2
72	One-Dimensional Electro-Optical Simulations of Thin-Film Solar Cells 2016 , 633-657		2
71	Transient Optoelectronic Characterization of Thin-FilmSolar Cells 2016 , 147-162		2
70	Cu(In,Ga)Se2 AND RELATED SOLAR CELLS. Series on Photoconversion of Solar Energy, 2014 , 245-305		2
69	Scanning Probe Microscopy on Inorganic Thin Films for Solar Cells 2011 , 275-298		2
68	Electron Microscopy on Thin Films for Solar Cells 2011 , 299-345		2
67	Efficient light trapping scheme by periodic and quasi-random light trapping structures. <i>Conference Record of the IEEE Photovoltaic Specialists Conference</i> , 2008 ,		2
66	Geometry effects on photon collection in photovoltaic fluorescent collectors 2008,		2
65	Preface: phys. stat. sol. (a) 205/12. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2008 , 205, 2735-2736	1.6	2
64	Anodizing Method Yielding Multiple Porous Seed Layers for the Epitaxial Growth of Monocrystalline Si Films. <i>Journal of the Electrochemical Society</i> , 2006 , 153, C133	3.9	2
63	Cu(In,Ga)Se2 Thin-Film Solar Cells 2003 , 367-413		2
62	Modification of Cu(In, Ga)Se2 Surface by Treatment in Cadmium Solutions. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 763, 8171		2
61	An Analytical Model for Rectifying Contacts on Polycrystalline Semiconductors. <i>Solid State Phenomena</i> , 1999 , 67-68, 553-558	0.4	2

60	Dielectric spectroscopy of relaxation processes in Cu(In,Ga)Se/sub 2/ solar cells 1996,		2
59	Impact ionization breakdown in p-germanium samples with very short contact distances. <i>Solid-State Electronics</i> , 1989 , 32, 1197-1200	1.7	2
58	Characteristic Relaxation Times of Low-temperature Semiconductor Breakdown Kinetics. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1989 , 44, 629-632	1.4	2
57	Hall-effect measurements during low-temperature avalanche breakdown of p-germanium. <i>Philosophical Magazine Letters</i> , 1988 , 57, 311-314	1	2
56	Dielectric Junction: Electrostatic Design for Charge Carrier Collection in Solar Cells. Solar Rrl,2100720	7.1	2
55	Prototyping of nanophotonic grating back contacts for light trapping in planar silicon solar cells. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2016 , 213, 1949-1954	1.6	2
54	High-quality amorphous silicon thin films for tunnel oxide passivating contacts deposited at over 150 nm/min. <i>Progress in Photovoltaics: Research and Applications</i> , 2021 , 29, 16-23	6.8	2
53	Photovoltaics: Nanoengineered Materials and Their Functionality in Solar Cells 2017 , 181-206		1
52	Electric properties and carrier multiplication in breakdown sites in multi-crystalline silicon solar cells. <i>Journal of Applied Physics</i> , 2015 , 117, 205703	2.5	1
51	Electrical Repair of Incomplete Back Contact Insulation (P1) in Cu(In,Ga)Se \$_2\$ Photovoltaic Thin-Film Modules. <i>IEEE Journal of Photovoltaics</i> , 2015 , 5, 1197-1205	3.7	1
50	Coupling Incident Light to Guided Modes in Thin-Film Tandem Solar Cells With Intermediate Reflector. <i>IEEE Journal of Photovoltaics</i> , 2015 , 5, 3-8	3.7	1
49	Development of Conductive SiC:H as a New Hydrogenation Technique for Tunnel Oxide Passivating Contacts. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 12, 29986-29992	9.5	1
48	Impact of Laser Treatment on Hydrogenated Amorphous Silicon Properties. <i>Advanced Engineering Materials</i> , 2020 , 22, 1901437	3.5	1
47	Introduction to Thin-Film Photovoltaics 2016 , 1-40		1
46	Characterizing the Light-Trapping Properties of Textured Surfaces with Scanning Near-Field Optical Microscopy 2016 , 257-274		1
45	Soft X-ray and Electron Spectroscopy: A Unique T ool Chest t o Characterize the Chemical and Electronic Properties of Surfaces and Interfaces 2016 , 501-522		1
44	Thermography and electroluminescence imaging of scribing failures in Cu(In,Ga)Se2 thin film solar modules. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2015 , 212, 2877-2888	1.6	1
43	The Principle of Detailed Balance and the Opto-Electronic Properties of Solar Cells 2015 , 21-48		1

42	Light-Trapping in Solar Cells by Directionally Selective Filters 2015 , 183-207	1
41	Linear Optics of Plasmonic Concepts to Enhance Solar Cell Performance 2015 , 209-230	1
40	Small-signal lock-in thermography at the maximum power point of an a-Si solar mini-module. Physica Status Solidi - Rapid Research Letters, 2014 , 8, 894-897	1
39	Degradation of tandem solar cells: Separating matching effects from Staebler-Wronski Effect using the Power-Matching-Method 2014 ,	1
38	Local junction voltages and radiative ideality factors of a-Si:H solar modules determined by electroluminescence imaging. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1536, 105-111	1
37	Soft X-Ray and Electron Spectroscopy: A Unique Tool Chest to Characterize the Chemical and Electronic Properties of Surfaces and Interfaces 2011 , 387-409	1
36	Enhanced light trapping in thin amorphous silicon solar cells by directionally selective optical filters 2010 ,	1
35	3D photonic crystals for photon management in solar cells 2010 ,	1
34	Inverted-opal photonic crystals for ultra light-trapping in solar cells 2010,	1
33	Ray tracing analysis of light scattering properties of randomly nano-textured ZnO films 2010,	1
33	Ray tracing analysis of light scattering properties of randomly nano-textured ZnO films 2010 , Electroluminescence from Cu(In,Ga)Se2 Thin-film Solar Cells. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1012, 1	1
	Electroluminescence from Cu(In,Ga)Se2 Thin-film Solar Cells. <i>Materials Research Society Symposia</i>	
32	Electroluminescence from Cu(In,Ga)Se2 Thin-film Solar Cells. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1012, 1	1
32	Electroluminescence from Cu(In,Ga)Se2 Thin-film Solar Cells. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1012, 1	1
3 ² 3 ¹ 3 ⁰	Electroluminescence from Cu(In,Ga)Se2 Thin-film Solar Cells. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1012, 1 Cu(In,Ga)Se2 thin-film solar cells 2005 , 303-349 An oscillation mechanism of semiconductor breakdown due to magnetic field induced transverse	1 1
3 ² 31 30 29	Electroluminescence from Cu(In,Ga)Se2 Thin-film Solar Cells. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1012, 1 Cu(In,Ga)Se2 thin-film solar cells 2005 , 303-349 An oscillation mechanism of semiconductor breakdown due to magnetic field induced transverse motion of current filaments. <i>Semiconductor Science and Technology</i> , 1992 , 7, B486-B487 Symmetry-breaking pattern formation in semiconductor physics: Spatio-temporal current	1 1 1
32 31 30 29 28	Electroluminescence from Cu(In,Ga)Se2 Thin-film Solar Cells. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1012, 1 Cu(In,Ga)Se2 thin-film solar cells 2005 , 303-349 An oscillation mechanism of semiconductor breakdown due to magnetic field induced transverse motion of current filaments. <i>Semiconductor Science and Technology</i> , 1992 , 7, B486-B487 Symmetry-breaking pattern formation in semiconductor physics: Spatio-temporal current structures during avalanche breakdown. <i>Computers and Mathematics With Applications</i> , 1989 , 17, 467-4737	1 1 1 1 1 1

24	Detailed balance analysis of photovoltaic materials and devices 2016,		1
23	Geometrical Light Trapping in Thin c-Si Solar Cells beyond Lambertian Limit 2019,		1
22	Application of Room Temperature Sputtered Al-doped Zinc Oxide in Silicon Heterojunction Solar Cells 2018 ,		1
21	Cu(In,Ga)Se2 Thin-Film Solar Cells 2018 , 371-418		1
20	Function Analysis of the Phosphine Gas Flow for n-Type Nanocrystalline Silicon Oxide Layer in Silicon Heterojunction Solar Cells. <i>ACS Applied Energy Materials</i> , 2021 , 4, 7544-7551	6.1	1
19	How Thin Practical Silicon Heterojunction Solar Cells Could Be? Experimental Study under 1 Sun and under Indoor Illumination. <i>Solar Rrl</i> ,2100594	7.1	1
18	Prediction of Limits of Solar-to-Hydrogen Efficiency from Polarization Curves of the Electrochemical Cells. <i>Solar Rrl</i> , 2022 , 6, 2100783	7.1	1
17	Effect of Doping, Photodoping, and Bandgap Variation on the Performance of Perovskite Solar Cells. <i>Advanced Optical Materials</i> ,2101947	8.1	1
16	Batteries to Keep Solar-Driven Water Splitting Running at Night: Performance of a Directly Coupled System. <i>Solar Rrl</i> ,2100916	7.1	О
15	Design of deterministic light-trapping structures for thin silicon heterojunction solar cells. <i>Optics Express</i> , 2021 , 29, 7410-7417	3.3	Ο
14	Scanning Probe Microscopy on Inorganic Thin Films for Solar Cells 2016 , 343-369		
13	Two- and Three-Dimensional Electronic Modeling of Thin-Film Solar Cells 2016 , 659-674		
12	Rear Side Diffractive Gratings for Silicon Wafer Solar Cells 2015 , 49-90		
11	Electroluminescence of Cu(In,Ga)Se2 solar cells and modules. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1538, 133-144		
10	Enhanced Light-trapping in Solar Cells by Directional Selective Optical Filters. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1101, 1		
9	Loss Mechanisms in Photovoltaic Fluorescent Collectors. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1101, 1		
8	Can Grain Boundaries Improve the Performance of Cu(In,Ga)Se2 Solar Cells?. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1012, 1		
7	Resistive Losses at c-Si/a-Si:H/ZnO Contacts for Heterojunction Solar Cells. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 989, 4		

- 6 Cathodoluminescence Studies of Cu(In,Ga)Se2 Thin-Films. Solid State Phenomena, 2003, 93, 133-140 0.4
- First Evidence of Self-Organized Criticality in the Impact Ionization Breakdown of Semiconductors. *Zeitschrift Fur Naturforschung Section A Journal of Physical Sciences*, **1990**, 45, 835-836
- 4 SPATIO-TEMPORAL INSTABILITIES IN THE ELECTRIC BREAKDOWN OF P-GERMANIUM **1988**, 817-820
- Cryoelectronic Application of a Hybrid Device Concept Based on Semiconducting and Superconducting Components **1989**, 575-578
- SYMMETRY-BREAKING PATTERN FORMATION IN SEMICONDUCTOR PHYSICS: SPATIO-TEMPORAL CURRENT STRUCTURES DURING AVALANCHE BREAKDOWN **1989**, 467-473
- On Negative Differential Resistance and Spontaneous Dissipative Structure Formation in the Electric Break-Down of p-Ge at Low Temperatures. *NATO ASI Series Series B: Physics*, **1993**, 261-268