List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8868777/publications.pdf Version: 2024-02-01



M EDEITAC

| #  | Article                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Ecodesign of automotive components making use of natural jute fiber composites. Journal of Cleaner<br>Production, 2010, 18, 313-327.                              | 4.6 | 502       |
| 2  | Identification of material properties of composite plate specimens. Composite Structures, 1993, 25, 277-285.                                                      | 3.1 | 142       |
| 3  | Failure mechanisms on composite specimens subjected to compression after impact. Composite Structures, 1998, 42, 365-373.                                         | 3.1 | 139       |
| 4  | Comparative study of multiaxial fatigue damage models for ductile structural steels and brittle materials. International Journal of Fatigue, 2009, 31, 1895-1906. | 2.8 | 67        |
| 5  | Stress Intensity Factors for semi-elliptical surface cracks in round bars under bending and torsion.<br>International Journal of Fatigue, 1999, 21, 457-463.      | 2.8 | 64        |
| 6  | Damage growth analysis of low velocity impacted composite panels. Composite Structures, 1997, 38, 509-515.                                                        | 3.1 | 62        |
| 7  | Numerical evaluation of failure mechanisms on composite specimens subjected to impact loading.<br>Composites Part B: Engineering, 2000, 31, 199-207.              | 5.9 | 62        |
| 8  | Simulation of cyclic stress/strain evolutions for multiaxial fatigue life prediction. International<br>Journal of Fatigue, 2006, 28, 451-458.                     | 2.8 | 61        |
| 9  | A Unified Numerical Approach for Multiaxial Fatigue Limit Evaluation. Mechanics Based Design of<br>Structures and Machines, 2000, 28, 85-103.                     | 0.6 | 60        |
| 10 | Marine main engine crankshaft failure analysis: A case study. Engineering Failure Analysis, 2009, 16,<br>1940-1947.                                               | 1.8 | 60        |
| 11 | Combined numerical–experimental model for the identification of mechanical properties of laminated structures. Composite Structures, 2000, 50, 363-372.           | 3.1 | 57        |
| 12 | Crack initiation and growth path under multiaxial fatigue loading in structural steels. International<br>Journal of Fatigue, 2009, 31, 1660-1668.                 | 2.8 | 57        |
| 13 | On the assessment of fatigue life of marine diesel engine crankshafts. Engineering Failure Analysis,<br>2015, 56, 51-57.                                          | 1.8 | 56        |
| 14 | Study of the fatigue behaviour of dissimilar aluminium joints produced by friction stir welding.<br>International Journal of Fatigue, 2016, 82, 310-316.          | 2.8 | 56        |
| 15 | Damage localization in laminated composite plates using mode shapes measured by pulsed TV holography. Composite Structures, 2006, 76, 272-281.                    | 3.1 | 50        |
| 16 | Failure criteria for mixed mode delamination in glass fibre epoxy composites. Composite Structures, 2010, 92, 2292-2298.                                          | 3.1 | 50        |
| 17 | New approach for analysis of complex multiaxial loading paths. International Journal of Fatigue, 2014, 62, 21-33.                                                 | 2.8 | 50        |
| 18 | A new risk prioritization model for failure mode and effects analysis. Quality and Reliability Engineering International, 2018, 34, 516-528.                      | 1.4 | 46        |

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The effect of steady torsion on fatigue crack growth in shafts. International Journal of Fatigue, 2006, 28, 609-617.                                                                           | 2.8 | 41        |
| 20 | Optimization of cruciform specimens for biaxial fatigue loading with direct multi search. Theoretical and Applied Fracture Mechanics, 2015, 80, 65-72.                                         | 2.1 | 41        |
| 21 | A Procedure for Fast Evaluation of High-Cycle Fatigue Under Multiaxial Random Loading. Journal of<br>Mechanical Design, Transactions of the ASME, 2002, 124, 558-563.                          | 1.7 | 40        |
| 22 | New cycle counting method for multiaxial fatigue. International Journal of Fatigue, 2014, 67, 78-94.                                                                                           | 2.8 | 39        |
| 23 | Biaxial high-cycle fatigue life assessment of ductile aluminium cruciform specimens. Theoretical and<br>Applied Fracture Mechanics, 2014, 73, 82-90.                                           | 2.1 | 36        |
| 24 | Effect on fatigue crack growth of interactions between overloads. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25, 709-722.                                             | 1.7 | 35        |
| 25 | The effect of microstructure and environment on fatigue crack growth in 7049 aluminium alloy at negative stress ratios. International Journal of Fatigue, 2003, 25, 1209-1216.                 | 2.8 | 35        |
| 26 | Crankshaft failure analysis of a motor vehicle. Engineering Failure Analysis, 2013, 35, 147-152.                                                                                               | 1.8 | 35        |
| 27 | Failure mode analysis of two crankshafts of a single cylinder diesel engine. Engineering Failure<br>Analysis, 2015, 56, 185-193.                                                               | 1.8 | 34        |
| 28 | ANALYSIS OF FATIGUE CRACK GROWTH IN ROTARY BEND SPECIMENS AND RAILWAY AXLES. Fatigue and Fracture of Engineering Materials and Structures, 1995, 18, 171-178.                                  | 1.7 | 33        |
| 29 | Characterisation of the edge crack torsion (ECT) test for the measurement of the mode III interlaminar fracture toughness. Engineering Fracture Mechanics, 2009, 76, 2799-2809.                | 2.0 | 33        |
| 30 | Fatigue crack growth with overloads/underloads: Interaction effects and surface roughness.<br>International Journal of Fatigue, 2009, 31, 1889-1894.                                           | 2.8 | 33        |
| 31 | A multiaxial fatigue approach to Rolling Contact Fatigue in railways. International Journal of Fatigue, 2014, 67, 191-202.                                                                     | 2.8 | 33        |
| 32 | A computerized procedure for long-life fatigue assessment under complex multiaxial loading. Fatigue<br>and Fracture of Engineering Materials and Structures, 2001, 24, 165-177.                | 1.7 | 31        |
| 33 | Comparative study on biaxial low-cycle fatigue behaviour of three structural steels. Fatigue and Fracture of Engineering Materials and Structures, 2006, 29, 992-999.                          | 1.7 | 30        |
| 34 | Crankshaft failure analysis of a boxer diesel motor. Engineering Failure Analysis, 2015, 56, 109-115.                                                                                          | 1.8 | 30        |
| 35 | Multiaxial fatigue: From materials testing to life prediction. Theoretical and Applied Fracture Mechanics, 2017, 92, 360-372.                                                                  | 2.1 | 30        |
| 36 | Effect of steady torsion on fatigue crack initiation and propagation under rotating bending:<br>Multiaxial fatigue and mixed-mode cracking. Engineering Fracture Mechanics, 2011, 78, 826-835. | 2.0 | 29        |

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Analytical and experimental studies on fatigue crack path under complex multi-axial loading. Fatigue<br>and Fracture of Engineering Materials and Structures, 2006, 29, 281-289.                | 1.7 | 28        |
| 38 | Sustainable design procedure: The role of composite materials to combine mechanical and environmental features for agricultural machines. Materials & Design, 2009, 30, 4060-4068.              | 5.1 | 28        |
| 39 | Failures analysis of compressor blades of aeroengines due to service. Engineering Failure Analysis,<br>2009, 16, 1118-1125.                                                                     | 1.8 | 27        |
| 40 | A study on the influence of Ni–Ti M-Wire in the flexural fatigue life of endodontic rotary files by<br>using Finite Element Analysis. Materials Science and Engineering C, 2014, 40, 172-179.   | 3.8 | 27        |
| 41 | New specimen and horn design for combined tension and torsion ultrasonic fatigue testing in the very high cycle fatigue regime. International Journal of Fatigue, 2017, 103, 248-257.           | 2.8 | 27        |
| 42 | Failure analysis of a damaged diesel motor crankshaft. Engineering Failure Analysis, 2019, 102, 1-6.                                                                                            | 1.8 | 27        |
| 43 | New approach to evaluate nonâ€proportionality in multiaxial loading conditions. Fatigue and Fracture of Engineering Materials and Structures, 2014, 37, 1338-1354.                              | 1.7 | 26        |
| 44 | Failure mode analysis of a diesel motor crankshaft. Engineering Failure Analysis, 2017, 82, 681-686.                                                                                            | 1.8 | 26        |
| 45 | Failure analysis of landing gears trunnions due to service. Engineering Failure Analysis, 2014, 41,<br>118-123.                                                                                 | 1.8 | 22        |
| 46 | Crack path evaluation on HC and BCC microstructures under multiaxial cyclic loading. International<br>Journal of Fatigue, 2014, 58, 102-113.                                                    | 2.8 | 22        |
| 47 | Fatigue crack growth under rotating bending loading on aluminium alloy 7075-T6 and the effect of a steady torsion. Theoretical and Applied Fracture Mechanics, 2015, 80, 57-64.                 | 2.1 | 21        |
| 48 | Failure analysis of cylinder head studs of a four stroke marine diesel engine. Engineering Failure<br>Analysis, 2019, 101, 298-308.                                                             | 1.8 | 21        |
| 49 | Effects of nonâ€proportional loading paths on the orientation of fatigue crack path. Fatigue and Fracture of Engineering Materials and Structures, 2005, 28, 445-454.                           | 1.7 | 20        |
| 50 | A damage parameter for HCF and VHCF based on hysteretic damping. International Journal of Fatigue,<br>2014, 62, 2-9.                                                                            | 2.8 | 20        |
| 51 | Numerical study of in-plane biaxial fatigue crack growth with different phase shift angle loadings on optimal specimen geometries. Theoretical and Applied Fracture Mechanics, 2016, 85, 16-25. | 2.1 | 20        |
| 52 | Fatigue damage assessment under random and variable amplitude multiaxial loading conditions in structural steels. International Journal of Fatigue, 2017, 100, 591-601.                         | 2.8 | 20        |
| 53 | Failure analysis of a gear wheel of a marine azimuth thruster. Engineering Failure Analysis, 2011, 18, 1884-1888.                                                                               | 1.8 | 19        |
| 54 | Minimum Circumscribed Ellipse (MCE) and Stress Scale Factor (SSF) criteria for multiaxial fatigue life assessment. Theoretical and Applied Fracture Mechanics, 2014, 73, 109-119.               | 2.1 | 19        |

| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Failure mode analysis of two diesel engine crankshafts. Procedia Structural Integrity, 2016, 1, 313-318.                                                                              | 0.3 | 19        |
| 56 | Failure analysis of a nose landing gear fork. Engineering Failure Analysis, 2017, 82, 554-565.                                                                                        | 1.8 | 19        |
| 57 | Wear behaviour of laser surface hardfaced steels with tungsten carbide powder injection. Surface and Coatings Technology, 1993, 57, 123-131.                                          | 2.2 | 17        |
| 58 | Failure analysis of the nose landing gear axle of an aircraft. Engineering Failure Analysis, 2019, 101,<br>113-120.                                                                   | 1.8 | 17        |
| 59 | A Numerical Approach for High-Cycle Fatigue Life Prediction with Multiaxial Loading. , 2000, , 139-156.                                                                               |     | 17        |
| 60 | Environment effects and surface roughness on fatigue crack growth at negative R-ratios.<br>International Journal of Fatigue, 2007, 29, 1971-1977.                                     | 2.8 | 16        |
| 61 | Bonded joints of dissimilar adherends at very low temperatures - An adhesive selection approach.<br>Theoretical and Applied Fracture Mechanics, 2016, 85, 99-112.                     | 2.1 | 16        |
| 62 | Review of Multiaxial Testing for Very High Cycle Fatigue: From â€~Conventional' to Ultrasonic Machines.<br>Machines, 2020, 8, 25.                                                     | 1.2 | 16        |
| 63 | Analysis of residual stresses induced by laser processing. Materials Science & Engineering A:<br>Structural Materials: Properties, Microstructure and Processing, 1993, 167, 115-122. | 2.6 | 15        |
| 64 | Failure analysis of a crankshaft of a helicopter engine. Engineering Failure Analysis, 2019, 100, 49-59.                                                                              | 1.8 | 15        |
| 65 | Residual strength of a damaged laminated CFRP under compressive fatigue stresses. Composites Science and Technology, 2006, 66, 373-378.                                               | 3.8 | 14        |
| 66 | Cruciform specimens' experimental analysis in ultrasonic fatigue testing. Fatigue and Fracture of<br>Engineering Materials and Structures, 2019, 42, 2496-2508.                       | 1.7 | 14        |
| 67 | Development of a Very High Cycle Fatigue (VHCF) multiaxial testing device. Frattura Ed Integrita<br>Strutturale, 2016, 10, 131-137.                                                   | 0.5 | 14        |
| 68 | Torsional and axial damping properties of the AZ31B-F magnesium alloy. Mechanical Systems and Signal Processing, 2016, 79, 112-122.                                                   | 4.4 | 13        |
| 69 | Stress scale factor and critical plane models under multiaxial proportional loading histories.<br>Engineering Fracture Mechanics, 2017, 174, 104-116.                                 | 2.0 | 13        |
| 70 | 3D-modelling of the local plastic deformation and residual stresses of PM diamond–metal matrix composites. Computational Materials Science, 2010, 47, 1023-1030.                      | 1.4 | 12        |
| 71 | Design optimization of cruciform specimens for biaxial fatigue loading. Frattura Ed Integrita<br>Strutturale, 2014, 8, 118-126.                                                       | 0.5 | 12        |
| 72 | Evaluation of the residual stresses due to the sintering process of diamond–metal matrix hot-pressed tools. Theoretical and Applied Fracture Mechanics, 2008, 49, 226-231.            | 2.1 | 11        |

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Biaxial fatigue for proportional and nonâ€proportional loading paths. Fatigue and Fracture of<br>Engineering Materials and Structures, 2004, 27, 775-784.                                                  | 1.7 | 11        |
| 74 | Fractographic analysis of delamination in glass/fibre epoxy composites. Journal of Composite<br>Materials, 2013, 47, 1437-1448.                                                                            | 1.2 | 11        |
| 75 | Strain measurements on specimens subjected to biaxial ultrasonic fatigue testing. Theoretical and Applied Fracture Mechanics, 2016, 85, 2-8.                                                               | 2.1 | 11        |
| 76 | Galvanic corrosion of aircraft bonded joints as a result of adhesive microcracks. Procedia<br>Structural Integrity, 2016, 1, 218-225.                                                                      | 0.3 | 11        |
| 77 | Fatigue life assessment of a railway wheel material under HCF and VHCF conditions. MATEC Web of Conferences, 2018, 165, 09003.                                                                             | 0.1 | 11        |
| 78 | Numerical study of fatigue crack initiation and propagation on optimally designed cruciform specimens. Procedia Structural Integrity, 2016, 1, 98-105.                                                     | 0.3 | 10        |
| 79 | Experimental characterization of the mechanical properties of railway wheels manufactured using class B material. Procedia Structural Integrity, 2016, 1, 265-272.                                         | 0.3 | 10        |
| 80 | Ultrasonic fatigue testing under multiaxial loading on a railway steel. International Journal of<br>Fatigue, 2020, 136, 105581.                                                                            | 2.8 | 10        |
| 81 | Stress Intensity Factors for Semi-Elliptical Surface Cracks in Round Bars Subjected to Mode I<br>(Bending) and Mode III (Torsion) Loading. European Structural Integrity Society, 1999, 25, 249-260.       | 0.1 | 9         |
| 82 | Fatigue Behaviour of Aluminium Lap Joints Produced by Laser Beam and Friction Stir Welding. Procedia<br>Engineering, 2014, 74, 293-296.                                                                    | 1.2 | 9         |
| 83 | The damage scale concept and the critical plane approach. Fatigue and Fracture of Engineering<br>Materials and Structures, 2017, 40, 1240-1250.                                                            | 1.7 | 9         |
| 84 | Cost analysis of alternative automated technologies for composite parts production. International<br>Journal of Production Research, 2019, 57, 1797-1810.                                                  | 4.9 | 9         |
| 85 | Mixed mode fatigue and fracture in planar geometries: Observations on K eq and crack path modelling.<br>Fatigue and Fracture of Engineering Materials and Structures, 2019, 42, 2441-2456.                 | 1.7 | 9         |
| 86 | In-Plane Biaxial Fatigue Testing Machine Powered by Linear Iron-Core Motors. , 2014, , 63-79.                                                                                                              |     | 9         |
| 87 | Mixed-mode delamination growth of laminar composites by using three-dimensional finite element modeling. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26, 543-549.                  | 1.7 | 8         |
| 88 | Evaluation of a phenomenological elasticâ€plastic approach for magnesium alloys under multiaxial<br>loading conditions. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42, 2468-2486. | 1.7 | 8         |
| 89 | Mechanical Behaviour of Sandwich Beams Manufactured with Glass or Jute Fiber in Facings and Cork<br>Agglomerates as Core. Materials Science Forum, 0, 636-637, 245-252.                                    | 0.3 | 6         |
| 90 | Ecodesign Applied to Components Based on Sugarcane Fibers Composites. Materials Science Forum, 0,<br>636-637, 226-232.                                                                                     | 0.3 | 6         |

| #   | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Determination of the rotary fatigue life of NiTi alloy wires. Theoretical and Applied Fracture<br>Mechanics, 2016, 85, 37-44.                                                                             | 2.1 | 6         |
| 92  | Failure analysis of compressor blades of a helicopter engine. Engineering Failure Analysis, 2019, 104, 67-74.                                                                                             | 1.8 | 6         |
| 93  | Methodology for fatigue life assessment of the structural integrity of fighter aircraft. Fatigue and<br>Fracture of Engineering Materials and Structures, 2004, 27, 873-877.                              | 1.7 | 5         |
| 94  | A New Criterion for Evaluating Multiaxial Fatigue Damage under Multiaxial Random Loading<br>Conditions. Advanced Materials Research, 0, 891-892, 1360-1365.                                               | 0.3 | 5         |
| 95  | The effect of steady torsion on fatigue crack growth under rotating bending loading on aluminium alloy 7075-T6. Frattura Ed Integrita Strutturale, 2014, 8, 360-368.                                      | 0.5 | 5         |
| 96  | Multiaxial Fatigue Damage Accumulation under Variable Amplitude Loading Conditions. Procedia<br>Engineering, 2015, 101, 117-125.                                                                          | 1.2 | 5         |
| 97  | Asynchronous Multiaxial Fatigue Damage Evaluation. Procedia Engineering, 2015, 101, 421-429.                                                                                                              | 1.2 | 5         |
| 98  | Rotary Fatigue Testing to Determine the Fatigue Life of NiTi alloy Wires: An Experimental and Numerical<br>Analisys. Procedia Structural Integrity, 2016, 1, 34-41.                                       | 0.3 | 5         |
| 99  | Optimal Cruciform Specimen Design Using the Direct Multi-search Method and Design Variable<br>Influence Study. Procedia Structural Integrity, 2017, 5, 659-666.                                           | 0.3 | 5         |
| 100 | Fatigue life of a railway wheel under uniaxial and multiaxial loadings. Procedia Structural Integrity,<br>2018, 13, 1786-1791.                                                                            | 0.3 | 5         |
| 101 | Monitoring of corrosionâ€fatigue degradation of grade R4 steel using an electrochemicalâ€mechanical combined approach. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42, 2509-2519. | 1.7 | 5         |
| 102 | Automation in Strain and Temperature Control on VHCF with an Ultrasonic Testing Facility. , 2014, , 80-100.                                                                                               |     | 5         |
| 103 | Finite Element Analysis of the Thermal Residual Stresses of Diamond Cutting Tools in the Sintering<br>Process. Materials Science Forum, 0, 587-588, 695-699.                                              | 0.3 | 4         |
| 104 | Rotary Fatigue Testing Machine to Determine the Fatigue Life of NiTi alloy Wires and Endondontic<br>Files. Procedia Engineering, 2015, 114, 500-505.                                                      | 1.2 | 4         |
| 105 | Fatigue Damage Map of AZ31B-F Magnesium Alloys under Multiaxial Loading Conditions. Metals, 2021, 11, 1616.                                                                                               | 1.0 | 4         |
| 106 | Effect of Shear/Axial Stress Ratio on Multiaxial Non-Proportional Loading Fatigue Damage on AISI 303<br>Steel. Metals, 2022, 12, 89.                                                                      | 1.0 | 4         |
| 107 | Fractographic Observation of Various Loading Modes of Fibre Reinforced Laminates. Materials Science<br>Forum, 2012, 730-732, 337-342.                                                                     | 0.3 | 3         |
| 108 | Evaluation of the AZ31 cyclic elastic-plastic behaviour under multiaxial loading conditions. Frattura<br>Ed Integrita Strutturale, 2014, 8, 282-292.                                                      | 0.5 | 3         |

| #   | Article                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Characterization and evaluation of the mechanical behaviour of the magnesium alloy AZ31B in multiaxial fatigue in the presence of a notch. Procedia Structural Integrity, 2016, 1, 197-204. | 0.3 | 3         |
| 110 | Numerical analysis of vhcf cruciform test specimens with non-unitary biaxiality ratios. International Journal of Computational Methods and Experimental Measurements, 2019, 7, 327-339.     | 0.1 | 3         |
| 111 | Multiaxial loadings with different frequencies between axial and torsional components in 42CrMo4 steel. International Journal of Structural Integrity, 2010, 1, 303-313.                    | 1.8 | 2         |
| 112 | AZ31 Magnesium Alloy Multiaxial LCF Behavior: Theory, Simulation and Experiments. Advanced Materials Research, 0, 891-892, 1366-1371.                                                       | 0.3 | 2         |
| 113 | The effect of welding direction in the fatigue life of aluminium FS welded lap joints. International<br>Journal of Structural Integrity, 2015, 6, 775-786.                                  | 1.8 | 2         |
| 114 | Inter-laminar shear stress in hybrid CFRP/austenitic steel. Frattura Ed Integrita Strutturale, 2015, 9,<br>67-79.                                                                           | 0.5 | 2         |
| 115 | Welding assessment of a damaged crane pedestal of a container ship. Ciência & Tecnologia Dos<br>Materiais, 2015, 27, 10-14.                                                                 | 0.5 | 2         |
| 116 | Random accumulated damage evaluation under multiaxial fatigue loading conditions. Frattura Ed<br>Integrita Strutturale, 2015, 9, 309-318.                                                   | 0.5 | 2         |
| 117 | Characterisation and Evaluation of the Mechanical Behaviour of Endodontic-grade NiTi Wires.<br>Frattura Ed Integrita Strutturale, 2019, 13, 450-462.                                        | 0.5 | 2         |
| 118 | Computational prediction of strain energy release rates of delamination in composite materials.<br>European Structural Integrity Society, 2000, , 149-160.                                  | 0.1 | 1         |
| 119 | Fatigue assessment of mechanical components under complex multiaxial loading. European<br>Structural Integrity Society, 2003, , 463-482.                                                    | 0.1 | 1         |
| 120 | Simulations of Cyclic Plasticity and Fatigue Behavior of Structural Steels under Multiaxial Loading.<br>Materials Science Forum, 2006, 514-516, 1414-1418.                                  | 0.3 | 1         |
| 121 | Using Life Cycle Assessment on environmental management projects: a case study of a Brazilian vehicle<br>development. , 2008, , .                                                           |     | 1         |
| 122 | Crack Growth Orientation in Two Structural Materials under Multiaxial Fatigue Loading. Materials<br>Science Forum, 2008, 587-588, 892-897.                                                  | 0.3 | 1         |
| 123 | 3D-FEM Simulation and Design Optimization of the Diamond Cutting Tools under Various Loading Conditions. Materials Science Forum, 0, 636-637, 1131-1136.                                    | 0.3 | 1         |
| 124 | Damage Accumulation Due to Sequential Loading Effect. Procedia Engineering, 2011, 10, 1396-1401.                                                                                            | 1.2 | 1         |
| 125 | Influence of Milling and Abrasive Waterjet Cutting on the Fatigue Behaviour of DP600 Steel Sheet.<br>Advanced Materials Research, 0, 891-892, 1761-1766.                                    | 0.3 | 1         |
| 126 | XV Portuguese Conference on Fracture (XV PCF). Theoretical and Applied Fracture Mechanics, 2016, 85, 1.                                                                                     | 2.1 | 1         |

| #   | Article                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Preliminary evaluation of the loading characteristics of biaxial tests at low and very high frequencies. Procedia Structural Integrity, 2016, 1, 205-211.         | 0.3 | 1         |
| 128 | Ultrasonic fatigue testing under multiaxial loading conditions on a railway wheel. MATEC Web of Conferences, 2019, 300, 18003.                                    | 0.1 | 1         |
| 129 | Guest editorial: Special issue—New trends in fatigue and fracture (NT2F18). Fatigue and Fracture of<br>Engineering Materials and Structures, 2019, 42, 2413-2413. | 1.7 | 1         |
| 130 | Damage evaluation under complex fatigue loading conditions. Frattura Ed Integrita Strutturale, 2019,<br>13, 318-331.                                              | 0.5 | 1         |
| 131 | Failure prediction of composite T-beams subjected to lateral load on the web. Composite Structures, 1995, 32, 601-607.                                            | 3.1 | 0         |
| 132 | Stress Relaxation on Biaxial Low Cycle Fatigue. Materials Science Forum, 2002, 404-407, 445-450.                                                                  | 0.3 | 0         |
| 133 | Comparative Study of the Additional Hardening Effects of Three Structural Steels. Materials Science Forum, 2006, 514-516, 534-538.                                | 0.3 | 0         |
| 134 | Interaction Effects due to Overloads and Underloads on Fatigue Crack Growth. Key Engineering<br>Materials, 2007, 348-349, 333-336.                                | 0.4 | 0         |
| 135 | Effect of Non-Proportionality in the Fatigue Strength of 42CrMo4 Steel. Materials Science Forum, 0, 730-732, 757-762.                                             | 0.3 | 0         |
| 136 | Critérios de delaminação em modo-misto de materiais compósitos laminados de vidro/epóxido. Ciência<br>& Tecnologia Dos Materiais, 2013, 25, 1-8.                  | 0.5 | 0         |
| 137 | 1st multi-lateral workshop on fracture – Preface. Theoretical and Applied Fracture Mechanics, 2015,<br>80, 1.                                                     | 2.1 | 0         |
| 138 | The Sixth International Conference on Engineering Failure Analysis. Engineering Failure Analysis, 2015, 56, 1.                                                    | 1.8 | 0         |
| 139 | The Sixth International Conference on Engineering Failure Analysis - Part 2. Engineering Failure<br>Analysis, 2016, 61, 1.                                        | 1.8 | 0         |
| 140 | Characterization and Evaluation of a Railway Wheel Steel in the HCF and VHCF Regimes. , 2018, , 41-47.                                                            |     | 0         |
| 141 | An algorithm for fatigue crack growth applied to mixed and biaxial mode loadings. Procedia<br>Structural Integrity, 2019, 17, 547-554.                            | 0.3 | 0         |
| 142 | A railway wheel evaluation under multiaxial loading conditions. MATEC Web of Conferences, 2019, 300, 09002.                                                       | 0.1 | 0         |
| 143 | A Procedure for Fast Evaluation of High-Cycle Fatigue Under Multiaxial Random Loading. , 2001, , .                                                                |     | 0         |
|     |                                                                                                                                                                   |     |           |

144 Elastic Behaviour of Z Reinforced Sandwich Beams. , 2005, , 271-280.

0

| #   | Article                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Multiaxial mixed-mode cracking – small crack initiation and propagation*. Materialpruefung/Materials<br>Testing, 2006, 48, 36-43.                                             | 0.8 | 0         |
| 146 | On the assessment of multiaxial fatigue damage under variable amplitude loading. Frattura Ed<br>Integrita Strutturale, 2016, 10, 124-130.                                     | 0.5 | 0         |
| 147 | Comparison between SSF and Critical-Plane models to predict fatigue lives under multiaxial proportional load histories. Frattura Ed Integrita Strutturale, 2016, 10, 121-127. | 0.5 | 0         |
| 148 | Modal and strain experimental analysis to an improved axial-axial cruciform specimen for ultrasonic fatigue testing. Procedia Structural Integrity, 2020, 28, 910-916.        | 0.3 | 0         |
| 149 | Evaluation and numerical modeling of phenomenological approach for AZ31B-F magnesium alloy under multiaxial fatigue. Procedia Structural Integrity, 2020, 28, 943-949.        | 0.3 | 0         |