Thomas Brüls

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8868764/publications.pdf

Version: 2024-02-01

623734 642732 6,726 24 14 citations h-index papers

g-index 27 27 27 11186 docs citations times ranked citing authors all docs

23

#	Article	IF	Citations
1	Enterotypes of the human gut microbiome. Nature, 2011, 473, 174-180.	27.8	5,800
2	A placenta-specific receptor for the fusogenic, endogenous retrovirus-derived, human syncytin-2. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17532-17537.	7.1	185
3	Endogeic earthworms shape bacterial functional communities and affect organic matter mineralization in a tropical soil. ISME Journal, 2012, 6, 213-222.	9.8	169
4	Fermentative Spirochaetes mediate necromass recycling in anoxic hydrocarbon-contaminated habitats. ISME Journal, 2018, 12, 2039-2050.	9.8	74
5	Activity screening of environmental metagenomic libraries reveals novel carboxylesterase families. Scientific Reports, 2017, 7, 44103.	3 . 3	67
6	An unusual strategy for the anoxic biodegradation of phthalate. ISME Journal, 2017, 11, 224-236.	9.8	61
7	Screening and Characterization of Novel Polyesterases from Environmental Metagenomes with High Hydrolytic Activity against Synthetic Polyesters. Environmental Science & Environmental Metagenomes with High Hydrolytic Environmental Metagenomes with High Environmental Metagenomes with High Hydrolytic Environmental Metagenomes with High Environmental Metagenomes with High Hydrolytic Environmental Metagenomes with High Hydrolytic Environmental Metagenomes with High Hydrolytic Environmental Science & Environmental En	10.0	56
8	Microbial Degradation of a Recalcitrant Pesticide: Chlordecone. Frontiers in Microbiology, 2016, 7, 2025.	3.5	55
9	Anaerobic degradation of phenanthrene by a sulfateâ€reducing enrichment culture. Environmental Microbiology, 2018, 20, 3589-3600.	3.8	45
10	Functional soil metagenomics: elucidation of polycyclic aromatic hydrocarbon degradation potential following 12 years of <i>in situ</i> bioremediation. Environmental Microbiology, 2017, 19, 2992-3011.	3.8	39
11	The human metagenome: our other genome?. Human Molecular Genetics, 2011, 20, R142-R148.	2.9	33
12	Metabolic reconstruction of the genome of candidate <i>Desulfatiglans</i> TRIP_1 and identification of key candidate enzymes for anaerobic phenanthrene degradation. Environmental Microbiology, 2019, 21, 1267-1286.	3.8	31
13	A patchwork pathway for oxygenaseâ€independent degradation of side chain containing steroids. Environmental Microbiology, 2017, 19, 4684-4699.	3.8	28
14	Microbial communities in pyrene amended soil–compost mixture and fertilized soil. AMB Express, 2017, 7, 7.	3.0	17
15	A scalable assembly-free variable selection algorithm for biomarker discovery from metagenomes. BMC Bioinformatics, 2016, 17, 311.	2.6	10
16	The class II benzoylâ€coenzyme A reductase complex from the sulfateâ€reducing <i>Desulfosarcina cetonica</i> . Environmental Microbiology, 2019, 21, 4241-4252.	3.8	10
17	A zero inflated log-normal model for inference of sparse microbial association networks. PLoS Computational Biology, 2021, 17, e1009089.	3.2	10
18	Channeling C1 Metabolism toward S -Adenosylmethionine-Dependent Conversion of Estrogens to Androgens in Estrogen-Degrading Bacteria. MBio, 2020, 11 , .	4.1	8

#	Article	IF	CITATION
19	A spectral algorithm for fast <i>de novo</i> layout of uncorrected long nanopore reads. Bioinformatics, 2017, 33, 3188-3194.	4.1	7
20	Binning unassembled short reads based on k-mer abundance covariance using sparse coding. GigaScience, 2020, 9, .	6.4	7
21	Shared Nearest Neighbor Clustering in a Locality Sensitive Hashing Framework. Journal of Computational Biology, 2018, 25, 236-250.	1.6	6
22	An assessment of the amount of untapped fold level novelty in under-sampled areas of the tree of life. Scientific Reports, 2015, 5, 14717.	3.3	4
23	The enzymatic nature of an anonymous protein sequence cannot reliably be inferred from superfamily level structural information alone. Protein Science, 2015, 24, 643-650.	7.6	3
24	Sparse Non-negative Matrix Factorization for Retrieving Genomes Across Metagenomes. Communications in Computer and Information Science, 2020, , 97-105.	0.5	0