
Marcelo B P Amato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8868731/publications.pdf Version: 2024-02-01

MARCELO R P AMATO

#	Article	IF	CITATIONS
1	Effect of a Protective-Ventilation Strategy on Mortality in the Acute Respiratory Distress Syndrome. New England Journal of Medicine, 1998, 338, 347-354.	13.9	3,866
2	Driving Pressure and Survival in the Acute Respiratory Distress Syndrome. New England Journal of Medicine, 2015, 372, 747-755.	13.9	1,905
3	Reversibility of Lung Collapse and Hypoxemia in Early Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 268-278.	2.5	1,558
4	An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1253-1263.	2.5	1,104
5	Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients With Acute Respiratory Distress Syndrome. JAMA - Journal of the American Medical Association, 2017, 318, 1335.	3.8	696
6	Set Positive End-expiratory Pressure during Protective Ventilation Affects Lung Injury. Anesthesiology, 2002, 97, 682-692.	1.3	627
7	Beneficial effects of the "open lung approach" with low distending pressures in acute respiratory distress syndrome. A prospective randomized study on mechanical ventilation American Journal of Respiratory and Critical Care Medicine, 1995, 152, 1835-1846.	2.5	584
8	Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax, 2017, 72, 83-93.	2.7	580
9	Imbalances in Regional Lung Ventilation. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 791-800.	2.5	555
10	Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data. Lancet Respiratory Medicine,the, 2016, 4, 272-280.	5.2	404
11	Spontaneous Effort Causes Occult Pendelluft during Mechanical Ventilation. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1420-1427.	2.5	391
12	Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. Intensive Care Medicine, 2009, 35, 1132-1137.	3.9	341
13	Randomized, prospective trial of oxygen, continuous positive airway pressure, and bilevel positive airway pressure by face mask in acute cardiogenic pulmonary edema*. Critical Care Medicine, 2004, 32, 2407-2415.	0.4	250
14	F <scp>ifty</scp> Y <scp>ears of</scp> R <scp>esearch in</scp> ARDS. Spontaneous Breathing during Mechanical Ventilation. Risks, Mechanisms, and Management. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 985-992.	2.5	250
15	Open Lung Approach for the Acute Respiratory Distress Syndrome. Critical Care Medicine, 2016, 44, 32-42.	0.4	215
16	Individual Positive End-expiratory Pressure Settings Optimize Intraoperative Mechanical Ventilation and Reduce Postoperative Atelectasis. Anesthesiology, 2018, 129, 1070-1081.	1.3	191
17	Real-time detection of pneumothorax using electrical impedance tomography*. Critical Care Medicine, 2008, 36, 1230-1238.	0.4	174
18	Esophageal Manometry and Regional Transpulmonary Pressure in Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1018-1026.	2.5	161

Marcelo B P Amato

#	Article	IF	CITATIONS
19	High Positive End-Expiratory Pressure Renders Spontaneous Effort Noninjurious. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1285-1296.	2.5	156
20	Ventilatory Variables and Mechanical Power in Patients with Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 303-311.	2.5	148
21	Electrical impedance tomography. Current Opinion in Critical Care, 2009, 15, 18-24.	1.6	143
22	Spontaneous Effort During Mechanical Ventilation: Maximal Injury With Less Positive End-Expiratory Pressure*. Critical Care Medicine, 2016, 44, e678-e688.	0.4	142
23	Paradoxical responses to positive end-expiratory pressure in patients with airway obstruction during controlled ventilation*. Critical Care Medicine, 2005, 33, 1519-1528.	0.4	135
24	F <scp>ifty</scp> Y <scp>ears of</scp> R <scp>esearch in</scp> ARDS.Respiratory Mechanics in Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 822-833.	2.5	134
25	Temporal Hemodynamic Effects of Permissive Hypercapnia Associated with Ideal PEEP in ARDS. American Journal of Respiratory and Critical Care Medicine, 1997, 156, 1458-1466.	2.5	132
26	Volume-controlled Ventilation Does Not Prevent Injurious Inflation during Spontaneous Effort. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 590-601.	2.5	117
27	Repetitive high-pressure recruitment maneuvers required to maximally recruit lung in a sheep model of acute respiratory distress syndrome. Critical Care Medicine, 2001, 29, 1579-1586.	0.4	114
28	Use of recruitment maneuvers and high positive end-expiratory pressure in a patient with acute respiratory distress syndrome. Critical Care Medicine, 2000, 28, 1210-1216.	0.4	113
29	Regional pressure volume curves by electrical impedance tomography in a model of acute lung injury. Critical Care Medicine, 2000, 28, 178-183.	0.4	104
30	Imaging in acute respiratory distress syndrome. Intensive Care Medicine, 2016, 42, 686-698.	3.9	104
31	Mask mechanics and leak dynamics during noninvasive pressure support ventilation: a bench study. Intensive Care Medicine, 2001, 27, 1887-1891.	3.9	103
32	Volume-Assured Pressure Support Ventilation (VAPSV). Chest, 1992, 102, 1225-1234.	0.4	101
33	Effects of alveolar recruitment maneuvers on clinical outcomes in patients with acute respiratory distress syndrome: a systematic review and meta-analysis. Intensive Care Medicine, 2014, 40, 1227-1240.	3.9	99
34	How large is the lung recruitability in early acute respiratory distress syndrome: a prospective case series of patients monitored by computed tomography. Critical Care, 2012, 16, R4.	2.5	92
35	Effect of Intensive vs Moderate Alveolar Recruitment Strategies Added to Lung-Protective Ventilation on Postoperative Pulmonary Complications. JAMA - Journal of the American Medical Association, 2017, 317, 1422.	3.8	92
36	Mechanical ventilation in acute respiratory failure: recruitment and high positive end-expiratory pressure are necessary. Current Opinion in Critical Care, 2005, 11, 18-28.	1.6	91

Marcelo B P Amato

#	Article	IF	CITATIONS
37	Yoga respiratory training improves respiratory function and cardiac sympathovagal balance in elderly subjects: a randomised controlled trial. BMJ Open, 2011, 1, e000085-e000085.	0.8	90
38	Positive end-expiratory pressure prevents lung mechanical stress caused by recruitment/derecruitment. Journal of Applied Physiology, 2005, 98, 53-61.	1.2	84
39	Transpulmonary Pressure Describes Lung Morphology During Decremental Positive End-Expiratory Pressure Trials in Obesity*. Critical Care Medicine, 2017, 45, 1374-1381.	0.4	83
40	Electrical Impedance Tomography Using the Extended Kalman Filter. IEEE Transactions on Biomedical Engineering, 2004, 51, 72-81.	2.5	71
41	Lung Recruitment in Obese Patients with Acute Respiratory Distress Syndrome. Anesthesiology, 2019, 130, 791-803.	1.3	67
42	Impact of spontaneous breathing during mechanical ventilation in acute respiratory distress syndrome. Current Opinion in Critical Care, 2019, 25, 192-198.	1.6	61
43	N-terminal-pro-brain natriuretic peptide as a haemodynamic marker in idiopathic pulmonary arterial hypertension. European Respiratory Journal, 2005, 25, 509-513.	3.1	57
44	Small airway remodeling in acute respiratory distress syndrome: a study in autopsy lung tissue. Critical Care, 2011, 15, R4.	2.5	57
45	The new definition for acute lung injury and acute respiratory distress syndrome. Current Opinion in Critical Care, 2013, 19, 16-23.	1.6	56
46	Applying Precision Medicine to Trial Design Using Physiology. Extracorporeal CO ₂ Removal for Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 558-568.	2.5	55
47	A comparison of methods to identify open-lung PEEP. Intensive Care Medicine, 2009, 35, 740-747.	3.9	54
48	A lung rescue team improves survival in obesity with acute respiratory distress syndrome. Critical Care, 2020, 24, 4.	2.5	54
49	Extrapolation from ten sections can make CT-based quantification of lung aeration more practicable. Intensive Care Medicine, 2010, 36, 1836-1844.	3.9	53
50	Realâ€ŧime ventilation and perfusion distributions by electrical impedance tomography during oneâ€ŀung ventilation with capnothorax. Acta Anaesthesiologica Scandinavica, 2015, 59, 354-368.	0.7	49
51	Positive End-Expiratory Pressure, Pleural Pressure, and Regional Compliance during Pronation. An Experimental Study. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 1266-1274.	2.5	46
52	Effects of tracheotomy on respiratory mechanics in spontaneously breathing patients. European Respiratory Journal, 2002, 20, 112-117.	3.1	44
53	Pulmonary lesion induced by low and high positive end-expiratory pressure levels during protective ventilation in experimental acute lung injury. Critical Care Medicine, 2009, 37, 1011-1017.	0.4	44
54	Neurally Adjusted Ventilatory Assist (NAVA) or Pressure Support Ventilation (PSV) during spontaneous breathing trials in critically ill patients: a crossover trial. BMC Pulmonary Medicine, 2017, 17, 139.	0.8	44

#	Article	IF	CITATIONS
55	Does Regional Lung Strain Correlate With Regional Inflammation in Acute Respiratory Distress Syndrome During Nonprotective Ventilation? An Experimental Porcine Study*. Critical Care Medicine, 2018, 46, e591-e599.	0.4	44
56	Ventilation patterns influence airway secretion movement. Respiratory Care, 2008, 53, 1287-94.	0.8	44
57	Heterogeneous effects of alveolar recruitment in acute respiratory distress syndrome: a machine learning reanalysis of the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial. British Journal of Anaesthesia, 2019, 123, 88-95.	1.5	43
58	Reverse Triggering Causes an Injurious Inflation Pattern during Mechanical Ventilation. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 1096-1099.	2.5	42
59	Concurrent Churg-Strauss Syndrome and Temporal Arteritis in a Young Patient with Pulmonary Nodules. The American Review of Respiratory Disease, 1989, 139, 1539-1542.	2.9	41
60	Follow-up after acute respiratory distress syndrome caused by influenza a (H1N1) virus infection. Clinics, 2011, 66, 933-937.	0.6	41
61	Regional Ventilation Displayed by Electrical Impedance Tomography as an Incentive to Decrease Positive End-Expiratory Pressure. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 933-937.	2.5	41
62	Acute vasodilator test in pulmonary arterial hypertension: Evaluation of two response criteria. Vascular Pharmacology, 2005, 43, 143-147.	1.0	40
63	Image reconstruction affects computer tomographic assessment of lung hyperinflation. Intensive Care Medicine, 2008, 34, 2044-2053.	3.9	39
64	Image Reconstruction Using Interval Simulated Annealing in Electrical Impedance Tomography. IEEE Transactions on Biomedical Engineering, 2012, 59, 1861-1870.	2.5	39
65	Expression of acute-phase cytokines, surfactant proteins, and epithelial apoptosis in small airways of human acute respiratory distress syndrome. Journal of Critical Care, 2013, 28, 111.e9-111.e15.	1.0	38
66	Dynamic Imaging in Electrical Impedance Tomography of the Human Chest With Online Transition Matrix Identification. IEEE Transactions on Biomedical Engineering, 2010, 57, 422-431.	2.5	37
67	Lung Recruitment in Patients with ARDS. New England Journal of Medicine, 2006, 355, 319-322.	13.9	36
68	Bedside Estimation of Nonaerated Lung Tissue Using Blood Gas Analysis*. Critical Care Medicine, 2013, 41, 732-743.	0.4	36
69	Understanding recruitment maneuvers. Intensive Care Medicine, 2016, 42, 908-911.	3.9	35
70	High Pleural Pressure Prevents Alveolar Overdistension and Hemodynamic Collapse in Acute Respiratory Distress Syndrome with Class III Obesity. A Clinical Trial. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 575-584.	2.5	35
71	Prolonged recruitment manoeuvre improves lung function with less ultrastructural damage in experimental mild acute lung injury. Respiratory Physiology and Neurobiology, 2009, 169, 271-281.	0.7	34
72	Lung recruitment maneuvers in acute respiratory distress syndrome. Respiratory Care Clinics of North America, 2003, 9, 401-418.	0.5	31

#	Article	IF	CITATIONS
73	Lung Inflammation Persists After 27 Hours of Protective Acute Respiratory Distress Syndrome Network Strategy and Is Concentrated in the Nondependent Lung. Critical Care Medicine, 2015, 43, e123-e132.	0.4	30
74	Airway Clearance With an Optimized Mechanical Insufflation-Exsufflation Maneuver. Respiratory Care, 2018, 63, 1214-1222.	0.8	29
75	Driving Pressure–limited Strategy for Patients with Acute Respiratory Distress Syndrome. A Pilot Randomized Clinical Trial. Annals of the American Thoracic Society, 2020, 17, 596-604.	1.5	29
76	Respiratory Failure Caused by Adiaspiromycosis. Chest, 1990, 97, 1171-1175.	0.4	28
77	Global and Regional Respiratory Mechanics During Robotic-Assisted Laparoscopic Surgery. Anesthesia and Analgesia, 2019, 129, 1564-1573.	1.1	27
78	First-year experience of a Brazilian tertiary medical center in supporting severely ill patients using extracorporeal membrane oxygenation. Clinics, 2012, 67, 1157-1163.	0.6	26
79	Interval Simulated Annealing applied to Electrical Impedance Tomography image reconstruction with fast objective function evaluation. Computers and Mathematics With Applications, 2016, 72, 1230-1243.	1.4	25
80	Understanding spontaneous vs. ventilator breaths: impact and monitoring. Intensive Care Medicine, 2018, 44, 2235-2238.	3.9	25
81	Mapping Regional Differences of Local Pressure-Volume Curves With Electrical Impedance Tomography. Critical Care Medicine, 2017, 45, 679-686.	0.4	22
82	Three-Dimensional Electrical Impedance Tomography: A Topology Optimization Approach. IEEE Transactions on Biomedical Engineering, 2008, 55, 531-540.	2.5	21
83	Goal-Oriented Respiratory Management for Critically III Patients with Acute Respiratory Distress Syndrome. Critical Care Research and Practice, 2012, 2012, 1-13.	0.4	20
84	Continuous Negative Abdominal Pressure Reduces Ventilator-induced Lung Injury in a Porcine Model. Anesthesiology, 2018, 129, 163-172.	1.3	20
85	Extrapolation in the analysis of lung aeration by computed tomography: a validation study. Critical Care, 2011, 15, R279.	2.5	19
86	Regional Lung Derecruitment and Inflammation during 16 Hours of Mechanical Ventilation in Supine Healthy Sheep. Anesthesiology, 2013, 119, 156-165.	1.3	19
87	Monitoring of Pneumothorax Appearance with Electrical Impedance Tomography during Recruitment Maneuvers. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1070-1073.	2.5	19
88	Response to Ventilator Adjustments for Predicting Acute Respiratory Distress Syndrome Mortality. Driving Pressure versus Oxygenation. Annals of the American Thoracic Society, 2021, 18, 857-864.	1.5	19
89	Pulmonary capillary pressure in pulmonary hypertension. Critical Care, 2005, 9, R132.	2.5	18
90	Lung Reaeration and Reventilation after Aspiration of Pleural Effusions. A Study Using Electrical Impedance Tomography. Annals of the American Thoracic Society, 2014, 11, 186-191.	1.5	18

MARCELO B P AMATO

#	Article	IF	CITATIONS
91	High Positive End-Expiratory Pressure Allows Extubation of an Obese Patient. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 524-525.	2.5	18
92	Obstructive respiratory failure in cicatricial pemphigoid Thorax, 1989, 44, 601-602.	2.7	17
93	The Recruitability Paradox. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1192-1195.	2.5	17
94	Oxigenação extracorpórea por membrana na hipoxemia grave: hora de revermos nossos conceitos?. Jornal Brasileiro De Pneumologia, 2012, 38, 7-12.	0.4	17
95	Estimation of Stroke Volume and Stroke Volume Changes by Electrical Impedance Tomography. Anesthesia and Analgesia, 2018, 126, 102-110.	1.1	16
96	Computed tomographic assessment of lung weights in trauma patients with early posttraumatic lung dysfunction. Critical Care, 2011, 15, R71.	2.5	15
97	Experimental study on the efficiency and safety of the manual hyperinflation maneuver as a secretion clearance technique. Jornal Brasileiro De Pneumologia, 2013, 39, 205-213.	0.4	14
98	Can heterogeneity in ventilation be good?. Critical Care, 2010, 14, 134.	2.5	13
99	Ultra-protective tidal volume: how low should we go?. Critical Care, 2013, 17, 127.	2.5	13
100	Quantitative Dual-Energy Computed Tomography Predicts Regional Perfusion Heterogeneity in a Model of Acute Lung Injury. Journal of Computer Assisted Tomography, 2018, 42, 866-872.	0.5	13
101	Continuous negative abdominal pressure: mechanism of action and comparison with prone position. Journal of Applied Physiology, 2018, 125, 107-116.	1.2	13
102	Neurally adjusted ventilatory assist vs. pressure support to deliver protective mechanical ventilation in patients with acute respiratory distress syndrome: a randomized crossover trial. Annals of Intensive Care, 2020, 10, 18.	2.2	13
103	Fuzzy modeling of electrical impedance tomography images of the lungs. Clinics, 2008, 63, 363-370.	0.6	12
104	Correlation of Lung Collapse and Gas Exchange - A Computer Tomographic Study in Sheep and Pigs with Atelectasis in Otherwise Normal Lungs. PLoS ONE, 2015, 10, e0135272.	1.1	12
105	Continuous Negative Abdominal Pressure Recruits Lungs at Lower Distending Pressures. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 534-537.	2.5	11
106	Role of Positive End-Expiratory Pressure and Regional Transpulmonary Pressure in Asymmetrical Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 969-976.	2.5	11
107	Effects of arterial oxygen tension and cardiac output on venous saturation: a mathematical modeling approach. Clinics, 2012, 67, 897-900.	0.6	10
108	Cycling-off modes during pressure support ventilation: Effects on breathing pattern, patient effort, and comfort. Journal of Critical Care, 2014, 29, 380-385.	1.0	10

MARCELO B P AMATO

#	Article	IF	CITATIONS
109	The Increasing Call for Protective Ventilation During Anesthesia. JAMA Surgery, 2017, 152, 893.	2.2	10
110	Pleural Pressure Targeted Positive Airway Pressure Improves Cardiopulmonary Function in Spontaneously Breathing Patients With Obesity. Chest, 2021, 159, 2373-2383.	0.4	10
111	First-time imaging of effects of inspired oxygen concentration on regional lung volumes and breathing pattern during hypergravity. European Journal of Applied Physiology, 2015, 115, 353-363.	1.2	9
112	Pendelluft Detection Using Electrical Impedance Tomography in an Infant. Keep Those Images in Mind. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 1427-1429.	2.5	9
113	The Elusive Search for "Best PEEP―and Whether Esophageal Pressure Monitoring Helps. JAMA - Journal of the American Medical Association, 2019, 321, 839.	3.8	7
114	Intraoperative open lung condition and postoperative pulmonary complications. A secondary analysis of iPROVE and iPROVEâ€O2 trials. Acta Anaesthesiologica Scandinavica, 2022, 66, 30-39.	0.7	7
115	Ventilação mecânica na lesão pulmonar aguda / sÃndrome do desconforto respiratório agudo. Revista Brasileira De Terapia Intensiva, 2007, 19, 374-383.	0.1	6
116	Driving Pressure as a Key Ventilation Variable. New England Journal of Medicine, 2015, 372, 2071-2072.	13.9	6
117	There is no cephalocaudal gradient of computed tomography densities or lung behavior in supine patients with acute respiratory distress syndrome. Acta Anaesthesiologica Scandinavica, 2016, 60, 767-779.	0.7	6
118	Electrical impedance tomography in pulmonary arterial hypertension. PLoS ONE, 2021, 16, e0248214.	1.1	6
119	Electrical impedance tomography in pediatric patients with COVID-19, the first reports. BMC Pulmonary Medicine, 2021, 21, 357.	0.8	6
120	Ventilation Strategies for Acute Lung Injury and Acute Respiratory Distress Syndrome. JAMA - Journal of the American Medical Association, 2008, 300, 39.	3.8	5
121	Electrical Impedance Tomography in Critically III Patients. Clinical Pulmonary Medicine, 2013, 20, 178-186.	0.3	5
122	Experimental blunt chest trauma – cardiorespiratory effects of different mechanical ventilation strategies with high positive end-expiratory pressure: a randomized controlled study. BMC Anesthesiology, 2015, 16, 3.	0.7	5
123	Parameter estimation of an artificial respiratory system under mechanical ventilation following a noisy regime. Research on Biomedical Engineering, 2015, 31, 343-351.	1.5	5
124	Different Low Constant Flows Can Equally Determine the Lower Inflection Point in Acute Respiratory Distress Syndrome Patients. Artificial Organs, 2001, 25, 882-889.	1.0	4
125	Lung Recruitment and Pendelluft Resolution after Less Invasive Surfactant Administration in a Preterm Infant. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 766-769.	2.5	4
126	Repeated endo-tracheal tube disconnection generates pulmonary edema in a model of volume overload: an experimental study. Critical Care, 2022, 26, 47.	2.5	4

MARCELO B P AMATO

#	Article	IF	CITATIONS
127	Severe acute respiratory distress syndrome, leptospirosis, and lung protective strategies. Critical Care Medicine, 2006, 34, 2703-2704.	0.4	3
128	Is It Time to Monitor Flow Bias During Mechanical Ventilation?. Respiratory Care, 2011, 56, 1970-1971.	0.8	3
129	Assessment of regional lung ventilation by electrical impedance tomography in a patient with unilateral bronchial stenosis and a history of tuberculosis. Jornal Brasileiro De Pneumologia, 2013, 39, 742-746.	0.4	3
130	Moderately high frequency ventilation with a conventional ventilator allows reduction of tidal volume without increasing mean airway pressure. Intensive Care Medicine Experimental, 2014, 2, 13.	0.9	3
131	Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. , 2012, , 165-170.		3
132	Ação da adenosina na circulação pulmonar de pacientes com hipertensão pulmonar primÃ;ria. Jornal Brasileiro De Pneumologia, 2005, 31, 20-24.	0.4	2
133	Physiologic effects of alveolar recruitment and inspiratory pauses during moderately-high-frequency ventilation delivered by a conventional ventilator in a severe lung injury model. PLoS ONE, 2017, 12, e0185769.	1.1	2
134	Evaluation of manual resuscitators used in ICUs in Brazil. Jornal Brasileiro De Pneumologia, 2013, 39, 595-603.	0.4	1
135	Alveolar Recruitment Strategies After Cardiac Surgery—Reply. JAMA - Journal of the American Medical Association, 2017, 318, 668.	3.8	1
136	Lung Recruitment and Positive End-Expiratory Pressure Titration in Patients With Acute Respiratory Distress Syndrome—Reply. JAMA - Journal of the American Medical Association, 2018, 319, 934.	3.8	1
137	Comment on: Effect of inspiratory rise time on sputum movement during ventilator hyperinflation in a test lung model. Physiotherapy, 2019, 105, 293-294.	0.2	1
138	Is Maximal Lung Recruitment Worth It?. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 1159a-1159a.	2.5	0
139	Reply to Morales-Quinteros et al.: Precision Medicine for Extracorporeal CO2 Removal for Acute Respiratory Distress Syndrome: CO2 Physiological Considerations. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1091-1092.	2.5	0
140	Should the ART trial change our practice?. Journal of Thoracic Disease, 2018, 10, E224-E226.	0.6	0
141	Individualizing Intraoperative Ventilation: Reply. Anesthesiology, 2019, 131, 448-449.	1.3	0
142	Reply to Camporota etÂal.: The 4DPRR Index and Mechanical Power: A Step Ahead or 4 Steps Backward?. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 492-493.	2.5	0
143	Phrenic Nerve Block and Respiratory Effort in Pigs and Critically Ill Patients with Acute Lung Injury. Anesthesiology, 2022, 136, 763-778.	1.3	0