
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8868707/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Defective ZnOx@porous carbon nanofiber network inducing dendrite-free zinc plating as zinc metal anode for high-performance aqueous rechargeable Zn/Na4Mn9O18 battery based on hybrid electrolyte. Journal of Power Sources, 2022, 518, 230761.	7.8	20
2	Microstructural Evolution and Mechanical Properties of Pure Aluminum upon Multi-Pass Caliber Rolling. Materials, 2022, 15, 1206.	2.9	2
3	Biodegradable Mg–Zn–Ca-Based Metallic Glasses. Materials, 2022, 15, 2172.	2.9	15
4	Self-standing porous Au/CuO nanowires with remarkably enhanced visible light absorption and photocatalytic performance. Applied Surface Science, 2022, 594, 153443.	6.1	13
5	Dual-phase nanostructuring as a route to flexible nanoporous metals with outstanding comprehensive mechanical properties. Science China Materials, 2021, 64, 2289-2304.	6.3	16
6	3D nanoporous Ni@NiO/metallic glass sandwich electrodes without corrosion cracks for flexible supercapacitor application. Applied Surface Science, 2021, 545, 149043.	6.1	24
7	Flexible porous Ni(OH)2 nanopetals sandwiches for wearable non-enzyme glucose sensors. Applied Surface Science, 2021, 552, 149529.	6.1	30
8	Improving the cycling stability of three-dimensional nanoporous Ge anode by embedding Ag nanoparticles for high-performance lithium-ion battery. Journal of Colloid and Interface Science, 2021, 592, 103-115.	9.4	22
9	Controllable nanoporous copper synthesized by dealloying metallic glasses: New insights into the tuning pore structure and applications. Chemical Engineering Journal, 2021, 427, 130861.	12.7	6
10	Flexible Co(OH)2/NiOxHy@Ni hybrid electrodes for high energy density supercapacitors. Chemical Engineering Journal, 2021, 415, 128871.	12.7	55
11	Flower-like Ni3S2 hollow microspheres as superior sulfur hosts for lithium-sulfur batteries. Microporous and Mesoporous Materials, 2021, 326, 111355.	4.4	12
12	Sn modified nanoporous Ge for improved lithium storage performance. Journal of Colloid and Interface Science, 2021, 602, 563-572.	9.4	23
13	Ag particles modified CuxO (x = 1, 2) nanowires on nanoporous Cu-Ag bimetal network for antibacterial applications. Materials Letters, 2020, 258, 126823.	2.6	14
14	Flexible integrated metallic glass-based sandwich electrodes for high-performance wearable all-solid-state supercapacitors. Applied Materials Today, 2020, 19, 100539.	4.3	45
15	Bimodal nanoporous NiO@Ni–Si network prepared by dealloying method for stable Li-ion storage. Journal of Power Sources, 2020, 449, 227550.	7.8	42
16	Formation and evolution of ultrathin Cu2O nanowires on NPC ribbon by anodizing for photocatalytic degradation. Applied Surface Science, 2020, 506, 144819.	6.1	27
17	Improving the Cycling Stability of Fe3O4/NiO Anode for Lithium Ion Battery by Constructing Novel Bimodal Nanoporous Urchin Network. Nanomaterials, 2020, 10, 1890.	4.1	7
18	Dual network porous Si/Al9FeSi3/Fe2O3 composite for high performance Li-ion battery anode. Electrochimica Acta, 2020, 358, 136936.	5.2	11

#	Article	IF	CITATIONS
19	Stearic Acid Coated MgO Nanoplate Arrays as Effective Hydrophobic Films for Improving Corrosion Resistance of Mg-Based Metallic Glasses. Nanomaterials, 2020, 10, 947.	4.1	6
20	AlF3 microrods modified nanoporous Ge/Ag anodes fabricated by one-step dealloying strategy for stable lithium storage. Materials Letters, 2020, 276, 128254.	2.6	7
21	Flexible Free-Standing CuxO/Ag2O (x = 1, 2) Nanowires Integrated with Nanoporous Cu-Ag Network Composite for Glucose Sensing. Nanomaterials, 2020, 10, 357.	4.1	4
22	High specific surface area bimodal porous carbon derived from biomass reed flowers for high performance lithium-sulfur batteries. Journal of Colloid and Interface Science, 2020, 569, 22-33.	9.4	103
23	Dual-network nanoporous NiFe2O4/NiO composites for high performance Li-ion battery anodes. Chemical Engineering Journal, 2020, 388, 124207.	12.7	54
24	Porous CuxO/Ag2O (xÂ=Â1, 2) nanowires anodized on nanoporous Cu-Ag bimetal network as a self-supported flexible electrode for glucose sensing. Applied Surface Science, 2020, 515, 146062.	6.1	34
25	A Ni(OH) ₂ nanopetals network for high-performance supercapacitors synthesized by immersing Ni nanofoam in water. Beilstein Journal of Nanotechnology, 2019, 10, 281-293.	2.8	22
26	Nanoporous GeO2/Cu/Cu2O network synthesized by dealloying method for stable Li-ion storage. Electrochimica Acta, 2019, 300, 363-372.	5.2	28
27	Surface Morphologies and Mechanical Properties of Mg-Zn-Ca Amorphous Alloys under Chemistry-Mechanics Interactive Environments. Metals, 2019, 9, 327.	2.3	5
28	Nanoporous Quasi-High-Entropy Alloy Microspheres. Metals, 2019, 9, 345.	2.3	11
29	Ultrafine Cu2O/CuO nanosheet arrays integrated with NPC/BMG composite rod for photocatalytic degradation. Applied Surface Science, 2019, 483, 285-293.	6.1	36
30	Flexible NiO micro-rods/nanoporous Ni/metallic glass electrode with sandwich structure for high performance supercapacitors. Electrochimica Acta, 2019, 297, 767-777.	5.2	64
31	Porous TiO2/Fe2O3 nanoplate composites prepared by de-alloying method for Li-ion batteries. Materials Letters, 2018, 211, 254-257.	2.6	23
32	Preparation and Electrochemical Properties of Pomegranate-Shaped Fe2O3/C Anodes for Li-ion Batteries. Nanoscale Research Letters, 2018, 13, 344.	5.7	10
33	Effects of Ag, Nd, and Yb on the Microstructures and Mechanical Properties of Mg‒Zn‒Ca Metallic Glasses. Metals, 2018, 8, 856.	2.3	7
34	Chemical Dealloying Synthesis of CuS Nanowire-on-Nanoplate Network as Anode Materials for Li-Ion Batteries. Metals, 2018, 8, 252.	2.3	28
35	Mechanical Properties and Degradation Behavior of Mg(100â^'7x)Zn6xYx(x = 0.2, 0.4, 0.6, 0.8) Alloys. Metals, 2018, 8, 261.	2.3	7
36	Yucca fern shaped CuO nanowires on Cu foam for remitting capacity fading of Li-ion battery anodes. Scientific Reports, 2018, 8, 6530.	3.3	56

#	Article	IF	CITATIONS
37	CoFe2O4 nanoplates synthesized by dealloying method as high performance Li-ion battery anodes. Electrochimica Acta, 2017, 252, 295-305.	5.2	63
38	Controlling the Mechanical Properties of Bulk Metallic Glasses by Superficial Dealloyed Layer. Nanomaterials, 2017, 7, 352.	4.1	9
39	One-step synthesis of CuO@brass foil by dealloying method for low-cost flexible supercapacitor electrodes. Journal of Materials Science: Materials in Electronics, 2016, 27, 9206-9215.	2.2	23
40	Hierarchical nanoporous metal/BMG composite rods with excellent mechanical properties. Intermetallics, 2016, 77, 1-5.	3.9	9
41	Novel bioactive Fe-based metallic glasses with excellent apatite-forming ability. Materials Science and Engineering C, 2016, 69, 513-521.	7.3	27
42	Dealloying of Cu-Based Metallic Glasses in Acidic Solutions: Products and Energy Storage Applications. Nanomaterials, 2015, 5, 697-721.	4.1	28
43	Fabrication and new electrochemical properties of nanoporous Cu by dealloying amorphous Cu–Hf–Al alloys. Intermetallics, 2015, 56, 48-55.	3.9	48
44	Tailored Dealloying Products of Cu-based Metallic Glasses in Hydrochloric Acid Solutions. Materials Research, 2014, 17, 1003-1009.	1.3	10
45	Synthesis of Cu xO(x = 1,2)/amorphous compounds by dealloying and spontaneous oxidation method. Materials Research, 2014, 17, 33-37.	1.3	17
46	Tunable Nanocrystals Fabricated by Free Dealloying of Amorphous Ribbons. Journal of Nanomaterials, 2012, 2012, 1-6.	2.7	2
47	Direct Preparation of Nano-Quasicrystals via a Water-Cooled Wedge-Shaped Copper Mould. Journal of Nanomaterials, 2012, 2012, 1-6.	2.7	3
48	Enhancement of glass-forming ability of FeSiBP bulk glassy alloys with good soft-magnetic properties and high corrosion resistance. Journal of Alloys and Compounds, 2012, 533, 67-70.	5.5	32
49	Fabrication and corrosion resistance of Mg-Zn-Y-based nano-quasicrystals alloys. Materials Research, 2012, 15, 51-56.	1.3	4
50	Mo microalloying effect on the glass-forming ability, magnetic, mechanical and corrosion properties of (Fe0.76Si0.096B0.084P0.06)100-xMox bulk glassy alloys. Journal of Alloys and Compounds, 2011, 509, 7688-7691.	5.5	40
51	Enhancement of glass-forming ability and corrosion resistance of Zr-based Zr-Ni-Al bulk metallic glasses with minor addition of Nb. Journal of Applied Physics, 2011, 110, 023513.	2.5	15
52	Glass Formation, Chemical Properties and Surface Analysis of Cu-Based Bulk Metallic Glasses. International Journal of Molecular Sciences, 2011, 12, 2275-2293.	4.1	15
53	New nickel-based bulk metallic glasses with extremely high nickel content. Journal of Alloys and Compounds, 2010, 489, 80-83.	5.5	15
54	Formation and properties of new Cu-based bulk glassy alloys with critical diameters up to 1.5 cm. Journal of Materials Research, 2009, 24, 2935-2940.	2.6	11

#	Article	IF	CITATIONS
55	Electrochemical and XPS studies of Ni-based metallic glasses in boiling nitric acid solutions. Electrochimica Acta, 2009, 54, 1612-1617.	5.2	25
56	Glass-Forming Ability and Properties of New Au-Based Glassy Alloys with Low Au Concentrations. Materials Transactions, 2009, 50, 1290-1293.	1.2	20
57	Surface characteristics of high corrosion resistant Ni–Nb–Zr–Ti–Ta glassy alloys for nuclear fuel reprocessing applications. Electrochemistry Communications, 2008, 10, 1408-1410.	4.7	15
58	Synthesis and properties of Cu–Zr–Ag–Al glassy alloys with high glass-forming ability. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 148, 92-96.	3.5	73
59	Formation and properties of new Ni–Ta-based bulk glassy alloys with large supercooled liquid region. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 485, 690-694.	5.6	11
60	Effect of Cr Addition on the Glass-Forming Ability, Magnetic, Mechanical and Corrosion Properties of (Fe _{0.76} Si _{0.096} B _{0.096} P _{0.048}) _{100−<i>x Bulk Glassy Alloys. Materials Transactions, 2008, 49, 2887-2890.</i>}	រ.2/SUB	s>Cor <i>≺SUB></i>
61	Mechanical properties and corrosion behavior of (Cu0.6Hf0.25Ti0.15)90Nb10 bulk metallic glass composites. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 230-234.	5.6	8
62	Effects of additional noble elements on the thermal stability and mechanical properties of Cu–Zr–Al bulk glassy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 631-635.	5.6	19
63	Effect of Tantalum on Corrosion Resistance of Ni–Nb(–Ta)–Ti–Zr Glassy Alloys at High Temperature. Materials Transactions, 2005, 46, 858-862.	1.2	22
64	Cu–Hf–Ti–Ag–Ta bulk metallic glass composites and their properties. Acta Materialia, 2005, 53, 2037-2048.	7.9	92
65	Glass formation, corrosion behavior and mechanical properties of bulk glassy Cu–Hf–Ti–Nb alloys. Acta Materialia, 2005, 53, 3903-3911.	7.9	62
66	New Cu-Zr-Al-Nb Bulk Glassy Alloys with High Corrosion Resistance. Materials Transactions, 2004, 45, 1958-1961.	1.2	26
67	Excellent Mechanical Properties of Cu-Hf-Ti-Ta Bulk Glassy Alloys Containing <i>In-Situ</i> Dendrite Ta-based BCC Phase. Materials Transactions, 2004, 45, 2936-2940.	1.2	24
68	Effects of Additional Elements on the Glass Formation and Corrosion Behavior of Bulk Glassy Cu-Hf-Ti Alloys. Materials Transactions, 2003, 44, 1042-1045.	1.2	26
69	Formation, Thermal Stability, Mechanical Properties and Corrosion Resistance of Cu-Zr-Ti-Ni-Nb Bulk Glassy Alloys. Materials Transactions, 2003, 44, 1147-1152.	1.2	21
70	Corrosion Behavior of Cu-Zr-Ti-Nb Bulk Glassy Alloys. Materials Transactions, 2003, 44, 749-753.	1.2	57