
Yulia Kuznetsova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8868694/publications.pdf

Version: 2024-02-01

VIILLA KUZNETSOVA

#	Article	lF	CITATIONS
1	Electronic structure, charge transfer, and intrinsic luminescence of gadolinium oxide nanoparticles: Experiment and theory. Applied Surface Science, 2018, 436, 697-707.	3.1	63
2	Atomic structure, electronic states, and optical properties of epitaxially grown β-Ga2O3 layers. Superlattices and Microstructures, 2018, 120, 90-100.	1.4	60
3	Down-conversion of UV radiation in erbium-doped gadolinium oxide nanoparticles. Applied Materials Today, 2018, 12, 34-42.	2.3	26
4	Photosensitive Defects in Gd2O3 – Advanced Material for Solar Energy Conversion. Energy Procedia, 2016, 102, 144-151.	1.8	21
5	Fabrication of (Y0.95Eu0.05)2O3 phosphors with enhanced properties by co-precipitation of layered rare-earth hydroxide. Journal of Alloys and Compounds, 2019, 805, 258-266.	2.8	21
6	Optical properties and energy parameters of Gd ₂ O ₃ and Gd ₂ O ₃ :Er nanoparticles. Journal of Physics: Conference Series, 2017, 917, 062001.	0.3	20
7	UV absorption and effects of local atomic disordering in the nickel oxide nanoparticles. Journal of Luminescence, 2017, 183, 135-142.	1.5	14
8	Luminescence of rare-earth ions and intrinsic defects in Gd ₂ O ₃ matrix. Journal of Physics: Conference Series, 2016, 741, 012089.	0.3	10
9	Characteristic features of optical absorption for Gd2O3 and NiO nanoparticles. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	10
10	Interband optical transitions in Gd2O3: Er nanoparticles – prospective system for energy convertors. IOP Conference Series: Materials Science and Engineering, 2018, 292, 012047.	0.3	10
11	Local atomic configurations, energy structure, and optical properties of implantation defects in Gd-doped silica glass: An XPS, PL, and DFT study. Journal of Alloys and Compounds, 2019, 796, 77-85.	2.8	10
12	Electronic Structure and Optical Absorption in Gdâ€Implanted Silica Glasses. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800522.	0.8	10
13	Energy transfer in Gd ₂ O ₃ :Er nanoparticles applying as a down-conversion layer for solar cell. Journal of Physics: Conference Series, 2017, 917, 052015.	0.3	9
14	Upconversion Luminescence of Gd2O3 Nanocrystals Doped with Er3+ and Yb3+ lons. Technical Physics Letters, 2018, 44, 622-625.	0.2	9
15	Kinetic selection of nonradiative excitation in photonic nanoparticles Gd ₂ O ₃ :Er. Physical Chemistry Chemical Physics, 2020, 22, 6818-6825.	1.3	9
16	Energy gaps, refractive index and photon emission from point defects in copper-doped Gd2O3 nanocrystalline films. Journal of Alloys and Compounds, 2022, 904, 163872.	2.8	9
17	Energy conversion of X-ray, ultraviolet and infrared radiation in Gd2O3 crystals doped with Er3+ ions. AIP Conference Proceedings, 2017, , .	0.3	8
18	The high refractive index of Gd2O3 thin films obtained by magnetron sputtering. Optical Materials, 2021, 120, 111382.	1.7	7

YULIA KUZNETSOVA

#	Article	IF	CITATIONS
19	Synthesis and Properties of (Ca/Sr)1 – 3xBi2xMoO4 Solid Solutions. Inorganic Materials, 2019, 55, 1020-1025.	0.2	6
20	Creation of Si quantum dots in a silica matrix due to conversion of radiation defects under pulsed ion-beam exposure. Physical Chemistry Chemical Physics, 2019, 21, 25467-25473.	1.3	5
21	Excited states of modified oxygen-deficient centers and Si quantum dots in Gd-implanted silica glasses: Emission dynamics and lifetime distributions. Physical Chemistry Chemical Physics, 2021, 23, 23184-23195.	1.3	3
22	Temperature-dependent luminescence of intrinsic defects and excitons in nanocrystalline monoclinic Y2O3 films. Journal of Luminescence, 2022, 250, 119102.	1.5	3
23	Optical properties and structure of beryllium lead silicate glasses. , 2014, , .		2
24	Photoluminescence of Gd2O3:Er – based materials for conversion of solar energy. Journal of Physics: Conference Series, 2015, 643, 012057.	0.3	2
25	Intrinsic Defectâ€Assisted UV–Visible Energy Conversion in Gd 2 O 3 :Er Nanoparticles. Physica Status Solidi (B): Basic Research, 2019, 256, 1800356.	0.7	2
26	Synthesis and luminescence properties of yttrium oxide ceramics with a variable europium content. AIP Conference Proceedings, 2019, , .	0.3	2
27	Optical properties and energy band parameters of luminescent CaMoO ₄ :Bi ceramics. Journal of Physics: Conference Series, 2018, 1124, 051005.	0.3	1
28	Luminescence at VUV-excitation of oxygen-deficient centers in silica glass implanted with 80 keV Re-ions. AIP Conference Proceedings, 2019, , .	0.3	1
29	The ways to improve the energy conversion efficiency in erbium-doped Gd ₂ O ₃ nanoparticles. Journal of Physics: Conference Series, 2018, 1124, 041013.	0.3	0
30	Up-conversion emission in Gd2O3 doped with RE-ions. AIP Conference Proceedings, 2018, , .	0.3	0