Knud J Jensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8868600/publications.pdf

Version: 2024-02-01

188 papers 6,295 citations

42 h-index

66336

70 g-index

232 all docs

232 docs citations

times ranked

232

7304 citing authors

#	Article	IF	CITATIONS
1	Receptor-mediated exopolysaccharide perception controls bacterial infection. Nature, 2015, 523, 308-312.	27.8	410
2	Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13859-13864.	7.1	301
3	Backbone Amide Linker (BAL) Strategy for Solid-Phase Synthesis of C-Terminal-Modified and Cyclic Peptides1,2,3. Journal of the American Chemical Society, 1998, 120, 5441-5452.	13.7	292
4	Microwave heating in solid-phase peptide synthesis. Chemical Society Reviews, 2012, 41, 1826-1844.	38.1	258
5	Halfâ€Life Extension of Biopharmaceuticals using Chemical Methods: Alternatives to PEGylation. ChemMedChem, 2016, 11, 2474-2495.	3.2	145
6	Solid-phase chemical tools for glycobiology. Carbohydrate Research, 2006, 341, 1209-1234.	2.3	132
7	Impact of Chain Length on Antibacterial Activity and Hemocompatibility of Quaternary <i>N</i> -Alkyl and <i>N</i> , <i>N</i> -Dialkyl Chitosan Derivatives. Biomacromolecules, 2015, 16, 1449-1460.	5. 4	115
8	Membrane Curvature Sensing by Amphipathic Helices. Journal of Biological Chemistry, 2011, 286, 42603-42614.	3.4	108
9	Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases. Nature Chemical Biology, 2015, 11, 192-194.	8.0	108
10	Fmoc Solid-Phase Synthesis of Peptide Thioesters by Masking as Trithioortho Esters. Organic Letters, 2003, 5, 2951-2953.	4.6	102
11	Backbone Amide Linker in Solid-Phase Synthesis. Chemical Reviews, 2009, 109, 2092-2118.	47.7	101
12	Chemical Strategies for Half-Life Extension of Biopharmaceuticals: Lipidation and Its Alternatives. ACS Medicinal Chemistry Letters, 2018, 9, 577-580.	2.8	94
13	O-Glycosylations under neutral or basic conditions. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 2219-2233.	1.3	88
14	Antimicrobial peptide shows enhanced activity and reduced toxicity upon grafting to chitosan polymers. Chemical Communications, 2015, 51, 11611-11614.	4.1	88
15	Ligand-recognizing motifs in plant LysM receptors are major determinants of specificity. Science, 2020, 369, 663-670.	12.6	87
16	Solid-Phase Synthesis with Tris(alkoxy)benzyl Backbone Amide Linkage (BAL)[â‰]. Chemistry - A European Journal, 1999, 5, 2787-2795.	3.3	86
17	A High-Throughput <i>O</i> -Glycopeptide Discovery Platform for Seromic Profiling. Journal of Proteome Research, 2010, 9, 5250-5261.	3.7	84
18	Membrane curvature regulates ligand-specific membrane sorting of GPCRs in living cells. Nature Chemical Biology, 2017, 13, 724-729.	8.0	81

#	Article	IF	CITATIONS
19	Solid-Phase Oligosaccharide and Glycopeptide Synthesis Using Glycosynthases. Journal of Organic Chemistry, 2002, 67, 4143-4149.	3.2	79
20	Synthesis of 2-Acetamido-2-deoxy- \hat{l}^2 -d-glucopyranoseO-Glycopeptides fromN-Dithiasuccinoyl-Protected Derivatives1-3. Journal of the American Chemical Society, 1996, 118, 3148-3155.	13.7	75
21	Chemoselective Reactions for the Synthesis of Glycoconjugates from Unprotected Carbohydrates. ChemBioChem, 2017, 18, 574-612.	2.6	75
22	Fmoc Solidâ€Phase Synthesis of Câ€Terminal Peptide Thioesters by Formation of a Backbone Pyroglutamyl Imide Moiety. Angewandte Chemie - International Edition, 2009, 48, 7411-7414.	13.8	74
23	Softening of POPC membranes by magainin. Biophysical Chemistry, 2008, 137, 7-12.	2.8	73
24	Nucleophilic Catalysis of Carbohydrate Oxime Formation by Anilines. Journal of Organic Chemistry, 2010, 75, 1752-1755.	3.2	70
25	Synthesis of N,N,N-trimethyl chitosan homopolymer and highly substituted N-alkyl-N,N-dimethyl chitosan derivatives with the aid of di-tert-butyldimethylsilyl chitosan. Carbohydrate Polymers, 2011, 86, 1451-1460.	10.2	67
26	Pentafluorophenyl esters for the temporary protection of the \hat{l}_{\pm} -carboxy group in solid phase glycopeptide synthesis. Journal of the Chemical Society Chemical Communications, 1990, , 483-485.	2.0	66
27	Carbohydrates in peptide and protein design. Biopolymers, 2005, 80, 747-761.	2.4	66
28	Self-assembling peptides form nanodiscs that stabilize membrane proteins. Soft Matter, 2014, 10, 738-752.	2.7	65
29	Improved Characterization of Nod Factors and Genetically Based Variation in LysM Receptor Domains Identify Amino Acids Expendable for Nod Factor Recognition in <i>Lotus</i> spp Molecular Plant-Microbe Interactions, 2010, 23, 58-66.	2.6	62
30	New Dendrimer–Peptide Host–Guest Complexes: Towards Dendrimers as Peptide Carriers. ChemBioChem, 2002, 3, 433.	2.6	59
31	Insulin analog with additional disulfide bond has increased stability and preserved activity. Protein Science, 2013, 22, 296-305.	7.6	59
32	Ultrasmall TPGS–PLGA Hybrid Nanoparticles for Site-Specific Delivery of Antibiotics into <i>Pseudomonas aeruginosa</i> Biofilms in Lungs. ACS Applied Materials & Lungs. ACS Applied Ma	8.0	57
33	Chemoselective Capture of Glycans for Analysis on Gold Nanoparticles: Carbohydrate Oxime Tautomers Provide Functional Recognition by Proteins. Chemistry - A European Journal, 2009, 15, 1649-1660.	3.3	56
34	Total Synthesis of desB30 Insulin Analogues by Biomimetic Folding of Singleâ€Chain Precursors. ChemBioChem, 2008, 9, 2989-2996.	2.6	51
35	Epidermal LysM receptor ensures robust symbiotic signalling in Lotus japonicus. ELife, 2018, 7, .	6.0	51
36	Glycosylation of phenols: preparation of 1,2-cis and 1,2-trans glycosylated tyrosine derivatives to be used in solid-phase glycopeptide synthesis. Journal of the Chemical Society Perkin Transactions 1, 1993, , 2119.	0.9	50

#	Article	IF	Citations
37	Improved PET Imaging of uPAR Expression Using new 64Cu-labeled Cross-Bridged Peptide Ligands: Comparative in vitro and in vivo Studies. Theranostics, 2013, 3, 618-632.	10.0	50
38	Carbopeptides: chemoselective ligation of peptide aldehydes to an aminooxy-functionalized D-galactose template. Journal of Peptide Science, 2000, 6, 290.	1.4	48
39	Selective N-terminal acylation of peptides and proteins with a Gly-His tag sequence. Nature Communications, 2018, 9, 3307.	12.8	45
40	Solid-phase synthesis of C-terminal peptide aldehydes from amino acetals anchored to a backbone amide linker (BAL) handle. Tetrahedron Letters, 2000, 41, 6131-6135.	1.4	44
41	Monolayer Assemblies of a De Novo Designed $4\cdot\hat{l}\pm$ -Helix Bundle Carboprotein and Its Sulfur Anchor Fragment on Au(111) Surfaces Addressed by Voltammetry and In Situ Scanning Tunneling Microscopy. Journal of the American Chemical Society, 2003, 125, 94-104.	13.7	44
42	A New, Efficient Glycosylation Method for Oligosaccharide Synthesis under Neutral Conditions:  Preparation and Use of New DISAL Donors. Journal of Organic Chemistry, 2001, 66, 6268-6275.	3.2	43
43	Carboproteins: A $4-\hat{l}\pm$ -helix bundle protein model assembled on a d-galactopyranoside template. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 697-700.	2.2	42
44	Microwave Heating for Solid-Phase Peptide Synthesis: General Evaluation and Application to 15-mer Phosphopeptides. International Journal of Peptide Research and Therapeutics, 2006, 12, 349-357.	1.9	41
45	Peptide–oligonucleotide conjugates as nanoscale building blocks for assembly of an artificial three-helix protein mimic. Nature Communications, 2016, 7, 12294.	12.8	39
46	COMU: scope and limitations of the latest innovation in peptide acyl transfer reagents. Journal of Peptide Science, 2013, 19, 408-414.	1.4	37
47	Dimeric peptides with three different linkers self-assemble with phospholipids to form peptide nanodiscs that stabilize membrane proteins. Soft Matter, 2016, 12, 5937-5949.	2.7	37
48	Use of the Dithiasuccinoyl (Dts) Amino Protecting Group for Solid-Phase Synthesis of Protected Peptide Nucleic Acid (PNA) Oligomers1-3. Journal of Organic Chemistry, 1999, 64, 7281-7289.	3.2	36
49	Chemoselective Reagents for Covalent Capture and Display of Glycans in Microarrays. European Journal of Organic Chemistry, 2010, 2010, 540-554.	2.4	35
50	The Ortho Backbone Amide Linker (o-BAL) Is an Easily Prepared and Highly Acid-Labile Handle for Solid-Phase Synthesis. ACS Combinatorial Science, 2002, 4, 223-228.	3.3	34
51	An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 592-605.	2.5	34
52	Thiophene Backbone Amide Linkers, a New Class of Easily Prepared and Highly Acid-Labile Linkers for Solid-Phase Synthesisâ€. Journal of Organic Chemistry, 2006, 71, 6734-6741.	3.2	33
53	Peptide Half-Life Extension: Divalent, Small-Molecule Albumin Interactions Direct the Systemic Properties of Glucagon-Like Peptide 1 (GLP-1) Analogues. Journal of Medicinal Chemistry, 2017, 60, 7434-7446.	6.4	33
54	Linkers, Resins, and General Procedures for Solid-Phase Peptide Synthesis. Methods in Molecular Biology, 2013, 1047, 23-41.	0.9	32

#	Article	IF	CITATIONS
55	Novel Covalently Linked Insulin Dimer Engineered to Investigate the Function of Insulin Dimerization. PLoS ONE, 2012, 7, e30882.	2.5	32
56	A plant chitinase controls cortical infection thread progression and nitrogen-fixing symbiosis. ELife, 2018, 7, .	6.0	32
57	Intramolecular Glycosylation under Neutral Conditions for Synthesis of 1,4-Linked Disaccharides. Organic Letters, 2001, 3, 687-690.	4.6	31
58	Random Glycopeptide Bead Libraries for Seromic Biomarker Discovery. Journal of Proteome Research, 2010, 9, 6705-6714.	3.7	31
59	Immobilization of Pectin Fragments on Solid Supports:Â Novel Coupling by Thiazolidine Formation. Bioconjugate Chemistry, 2002, 13, 285-294.	3.6	30
60	Characterization of the Viral <i>O</i> -Glycopeptidome: a Novel Tool of Relevance for Vaccine Design and Serodiagnosis. Journal of Virology, 2012, 86, 6268-6278.	3.4	30
61	How Membrane Geometry Regulates Protein Sorting Independently of Mean Curvature. ACS Central Science, 2020, 6, 1159-1168.	11.3	29
62	Synthesis and evaluation of novel lipidated neuromedin U analogs with increased stability and effects on food intake. Journal of Peptide Science, 2015, 21, 85-94.	1.4	28
63	Antisense Oligonucleotides Internally Labeled with Peptides Show Improved Target Recognition and Stability to Enzymatic Degradation. Bioconjugate Chemistry, 2017, 28, 768-774.	3.6	28
64	The ABC of Insulin: The Organic Chemistry of a Small Protein. Chemistry - A European Journal, 2020, 26, 8341-8357.	3.3	28
65	Reconsidering glycosylations at high temperature: precise microwave heating. Organic and Biomolecular Chemistry, 2005, 3, 3966.	2.8	27
66	Controlled Selfâ€Assembly of Reâ€engineered Insulin by Fe ^{II} . Chemistry - A European Journal, 2011, 17, 7198-7204.	3.3	27
67	Carbohydrates as templates for control of distance-geometry in de novo-designed proteins. Cellular and Molecular Life Sciences, 2002, 59, 859-869.	5.4	26
68	Membrane Curvature and Lipid Composition Synergize To Regulate N-Ras Anchor Recruitment. Biophysical Journal, 2017, 113, 1269-1279.	0.5	26
69	Synthesis of glycosyltyrosine building blocks for solid-phase glycopeptide assembly: use of aryl tert-butyl ethers as glycosyl acceptors in aromatic glycosylations. Journal of the Chemical Society Perkin Transactions 1, 1994, , 3287.	0.9	25
70	Carbopeptides: carbohydrates as potential templates for de novo design of protein models. Chemical Biology and Drug Design, 2000, 56, 3-11.	1.1	25
71	Solid-phase oligosaccharide synthesis with tris(alkoxy)benzyl amine (BAL) safety-catch anchoring. Chemical Communications, 2000, , 147-148.	4.1	25
72	Monosaccharide templates for de novo designed 4-α-helix bundle proteins: template effects in carboproteins. Organic and Biomolecular Chemistry, 2003, 1, 2247-2252.	2.8	25

#	Article	IF	Citations
73	Peptide dithiodiethanol esters for in situ generation of thioesters for use in native ligation. Tetrahedron Letters, 2007, 48, 2105-2107.	1.4	25
74	DISAL glycosyl donors for efficient glycosylations under acidic conditions: Application to solid-phase oligosaccharide synthesis. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 2175-2182.	1.3	24
75	Automated  X‥' robot for peptide synthesis with microwave heating: application to difficult peptide sequences and protein domains. Journal of Peptide Science, 2010, 16, 506-512.	1.4	24
76	Neoglycolipids for Prolonging the Effects of Peptides: Self-Assembling Glucagon-like Peptide 1 Analogues with Albumin Binding Properties and Potent in Vivo Efficacy. Molecular Pharmaceutics, 2017, 14, 193-205.	4.6	24
77	Solid-supported enzymatic synthesis of pectic oligogalacturonides and their analysis by MALDI-TOF mass spectrometry. Carbohydrate Research, 2003, 338, 1951-1960.	2.3	23
78	4,6â€Oâ€Benzylidene Directed βâ€Mannosylation Without Intermediate Triflate Formation? Comparison of Trichloroacetimidate and DISAL Donors in Microwaveâ€Promoted Glycosylations under Neutral Conditions. Journal of Carbohydrate Chemistry, 2007, 26, 349-368.	1.1	23
79	Direct chemoselective synthesis of glyconanoparticles from unprotected reducing glycans and glycopeptide aldehydes. Chemical Communications, 2009, , 6367.	4.1	23
80	Synthesis of Benzaldehydeâ€Functionalized Glycans: A Novel Approach Towards Glycoâ€6AMs as a Tool for Surface Plasmon Resonance Studies. Chemistry - A European Journal, 2010, 16, 7017-7029.	3.3	23
81	Kinetic proofreading of lipochitooligosaccharides determines signal activation of symbiotic plant receptors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	23
82	End-to-end assembly of gold nanorods via oligopeptide linking and surfactant control. Journal of Colloid and Interface Science, 2012, 376, 83-90.	9.4	22
83	A Cyclic Peptidic Serine Protease Inhibitor: Increasing Affinity by Increasing Peptide Flexibility. PLoS ONE, 2014, 9, e115872.	2.5	22
84	GUBO6â€046, a novel secretin/glucagonâ€like peptide 1 coâ€agonist, decreases food intake, improves glycemic control, and preserves beta cell mass in diabetic mice. Journal of Peptide Science, 2017, 23, 845-854.	1.4	22
85	DISAL Glycosyl Donors for the Synthesis of a Linear Hexasaccharide under Mild Conditions. Organic Letters, 2003, 5, 1309-1312.	4.6	21
86	Semiâ€automated microwaveâ€assisted SPPS: Optimization of protocols and synthesis of difficult sequences. Biopolymers, 2010, 94, 206-212.	2.4	21
87	Elucidation of the Contribution of Active Site and Exosite Interactions to Affinity and Specificity of Peptidylic Serine Protease Inhibitors Using Non-Natural Arginine Analogs. Molecular Pharmacology, 2011, 80, 585-597.	2.3	21
88	Regioselective fluorescent labeling of N,N,N-trimethyl chitosan via oxime formation. Carbohydrate Polymers, 2012, 90, 1273-1280.	10.2	21
89	Two Dialkoxynaphthalene Aldehydes as Backbone Amide Linkers for Solid-Phase Synthesis. ACS Combinatorial Science, 2004, 6, 497-503.	3.3	19
90	Fractionation, solid-phase immobilization and chemical degradation of long pectin oligogalacturonides. Initial steps towards sequencing of oligosaccharides. Carbohydrate Research, 2006, 341, 118-129.	2.3	19

#	Article	IF	Citations
91	Combinatorial Solid-Phase Synthesis of Hapalosin Mimetics1,2. ACS Combinatorial Science, 2000, 2, 143-150.	3.3	18
92	Role of the peri-effect in synthesis and reactivity of highly substituted naphthaldehydes: a novel backbone amide linker for solid-phase synthesis. Organic and Biomolecular Chemistry, 2005, 3, 508.	2.8	18
93	Effect of Residual Water and Microwave Heating on the Half-Life of the Reagents and Reactive Intermediates in Peptide Synthesis. Chemistry - A European Journal, 2012, 18, 9024-9031.	3.3	18
94	Solid-Phase Peptide Synthesis: An Introduction. Methods in Molecular Biology, 2013, 1047, 1-21.	0.9	18
95	Half-Life Extending Modifications of Peptide YY _{3â€"36} Direct Receptor-Mediated Internalization. Molecular Pharmaceutics, 2019, 16, 3665-3677.	4.6	18
96	Solid-phase glycopeptide synthesis of tyrosine-glycosylated glycogenin fragments as substrates for glucosylation by glycogenin. Journal of the Chemical Society Perkin Transactions 1, 1996, , 1001.	0.9	17
97	Bicyclic Peptide Inhibitor of Urokinaseâ€₹ype Plasminogen Activator: Mode of Action. ChemBioChem, 2013, 14, 2179-2188.	2.6	17
98	Solid-Phase synthesis of new saphenamycin analogues with antimicrobial activity. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 171-175.	2.2	16
99	Efficient synthesis of glycosylated phenazine natural products and analogs with DISAL (methyl) Tj ETQq $1\ 1\ 0.78$	4314 rgBT 2.8	/Overlock 10
100	Hierarchical Self-Assembly of Designed 2 \tilde{A} — 2- \hat{I} ±-Helix Bundle Proteins on Au(111) Surfaces. Langmuir, 2006, 22, 6661-6667.	3.5	16
101	The Binding Mechanism of a Peptidic Cyclic Serine Protease Inhibitor. Journal of Molecular Biology, 2011, 412, 235-250.	4.2	16
102	On-Bead Chemical Synthesis and Display of Phosphopeptides for Affinity Pull-Down Proteomics. ChemBioChem, 2006, 7, 623-630.	2.6	15
103	Synthesis of functionalized de novo designed 8–16 kDa model proteins towards metal ion-binding and esterase activity. Organic and Biomolecular Chemistry, 2007, 5, 2225-2233.	2.8	15
104	Microwave Heating in the Solidâ€Phase Synthesis of <i>N</i> â€Methylated Peptides: When Is Room Temperature Better?. European Journal of Organic Chemistry, 2012, 2012, 7106-7111.	2.4	15
105	Additional disulfide bonds in insulin: Prediction, recombinant expression, receptor binding affinity, and stability. Protein Science, 2015, 24, 779-788.	7.6	15
106	Modifying the conserved <i>C</i> ê€terminal tyrosine of the peptide hormone PYY3â€36 to improve Y2 receptor selectivity. Journal of Peptide Science, 2009, 15, 753-759.	1.4	14
107	Peptide hormone isoforms: <i>N</i> àêterminally branched PYY3–36 isoforms give improved lipid and fatâ€cell metabolism in dietâ€induced obese mice. Journal of Peptide Science, 2010, 16, 664-673.	1.4	14
108	Metal Ion Controlled Self-Assembly of a Chemically Reengineered Protein Drug Studied by Small-Angle X-ray Scattering. Langmuir, 2012, 28, 12159-12170.	3.5	14

#	Article	lF	Citations
109	Gold–Ferrocene Glycoâ€Nanoparticles for Highâ€Sensitivity Electrochemical Detection of Carbohydrate–Lectin Interactions. European Journal of Organic Chemistry, 2013, 2013, 2793-2801.	2.4	14
110	Chirality transmission in macromolecular domains. Nature Communications, 2022, 13, 76.	12.8	14
111	Chemically Synthesized 58â€mer LysM Domain Binds Lipochitin Oligosaccharide. ChemBioChem, 2014, 15, 2097-2105.	2.6	13
112	Folding Topology of a Short Coiledâ€Coil Peptide Structure Templated by an Oligonucleotide Triplex. Chemistry - A European Journal, 2017, 23, 9297-9305.	3.3	13
113	3―Instead of 4â€Helix Formation in a De Novo Designed Protein in Solution Revealed by Smallâ€Angle Xâ€ray Scattering. ChemBioChem, 2008, 9, 2663-2672.	2.6	12
114	Instruments for Automated Peptide Synthesis. Methods in Molecular Biology, 2013, 1047, 215-224.	0.9	12
115	Large-Scale Biophysical Evaluation of Protein PEGylation Effects: In Vitro Properties of 61 Protein Entities. Molecular Pharmaceutics, 2016, 13, 1587-1598.	4.6	12
116	Preparation of glycoconjugates from unprotected carbohydrates for protein-binding studies. Nature Protocols, 2017, 12, 2411-2422.	12.0	12
117	An Aldehyde Responsive, Cleavable Linker for Glucose Responsive Insulins. Chemistry - A European Journal, 2021, 27, 3166-3176.	3.3	12
118	2,4-DIMETHOXYBENZYL: AN AMIDE PROTECTING GROUP FOR 2-ACETAMIDO GLYCOSYL DONORS1. Journal of Carbohydrate Chemistry, 2001, 20, 537-548.	1.1	11
119	Synchrotron radiation circular dichroism spectroscopy applied to metmyoglobin and a 4-?-helix bundle carboprotein. Biopolymers, 2005, 78, 46-52.	2.4	11
120	Perfluoroalkyl Chains Direct Novel Self-Assembly of Insulin. Langmuir, 2012, 28, 593-603.	3.5	11
121	Kinetic analysis of inhibition of glucoamylase and active site mutants via chemoselective oxime immobilization of acarbose on SPR chip surfaces. Carbohydrate Research, 2013, 375, 21-28.	2.3	11
122	Construction of Insulin 18â€mer Nanoassemblies Driven by Coordination to Iron(II) and Zinc(II) lons at Distinct Sites. Angewandte Chemie - International Edition, 2016, 55, 2378-2381.	13.8	11
123	IRDye800CW labeled uPAR-targeting peptide for fluorescence-guided glioblastoma surgery: Preclinical studies in orthotopic xenografts. Theranostics, 2021, 11, 7159-7174.	10.0	11
124	Synthesis of Two dâ€Glucosamine Derived 3,4â€Epoxides as Potential Scaffolds for Combinatorial Chemistry. Journal of Carbohydrate Chemistry, 2003, 22, 179-184.	1.1	10
125	Glucosamine derived DISAL donors for stereoselective glycosylations under neutral conditions. Tetrahedron: Asymmetry, 2005, 16, 1439-1448.	1.8	10
126	Selfâ€assembly of designed coiled coil peptides studied by smallâ€angle Xâ€ray scattering and analytical ultracentrifugation. Journal of Peptide Science, 2013, 19, 283-292.	1.4	10

#	Article	IF	Citations
127	Lipochitin Oligosaccharides Immobilized through Oximes in Glycan Microarrays Bind LysM Proteins. ChemBioChem, 2014, 15, 425-434.	2.6	10
128	Integrin Targeting and Toxicological Assessment of Peptideâ€Conjugated Liposome Delivery Systems to Activated Endothelial Cells. Basic and Clinical Pharmacology and Toxicology, 2017, 120, 380-389.	2.5	10
129	Solid-Phase Synthesis of Phosphopeptides. Methods in Molecular Biology, 2013, 1047, 191-199.	0.9	10
130	Glycoâ€Scan: Varying Glycosylation in the Sequence of the Peptide Hormone PYY3â€36 and Its Effect on Receptor Selectivity. ChemBioChem, 2010, 11, 366-374.	2.6	9
131	Multivalent display of the antimicrobial peptides BP100 and BP143. Beilstein Journal of Organic Chemistry, 2012, 8, 2106-2117.	2.2	9
132	Selection of High-Affinity Peptidic Serine Protease Inhibitors with Increased Binding Entropy from a Back-Flip Library of Peptide–Protease Fusions. Journal of Molecular Biology, 2015, 427, 3110-3122.	4.2	9
133	A brain-targeting lipidated peptide for neutralizing RNA-mediated toxicity in Polyglutamine Diseases. Scientific Reports, 2017, 7, 12077.	3.3	9
134	Glycoconjugate Oxime Formation Catalyzed at Neutral pH: Mechanistic Insights and Applications of 1,4-Diaminobenzene as a Superior Catalyst for Complex Carbohydrates. Bioconjugate Chemistry, 2018, 29, 1219-1230.	3.6	9
135	Carbohydrateâ€Derived Metalâ€Chelatorâ€Triggered Lipids for Liposomal Drug Delivery. Chemistry - A European Journal, 2021, 27, 6917-6922.	3.3	9
136	Phenazines and Natural Products; Novel Synthesis of Saphenic Acid. Synthesis, 1999, 1999, 1763-1766.	2.3	8
137	Identification of Anchor Points for Chemical Modification of a Small Cysteineâ€Rich Protein by Using a Cysteine Scan. ChemBioChem, 2011, 12, 2448-2455.	2.6	8
138	Linear Multiepitope (Glyco)peptides for Type-Specific Serology of Herpes Simplex Virus (HSV) Infections. ACS Infectious Diseases, 2017, 3, 360-367.	3.8	8
139	Selfâ€Assembly of DNA–Peptide Supermolecules: Coiledâ€Coil Peptide Structures Templated by <scp>d</scp> â€DNA and <scp>l</scp> â€DNA Triplexes Exhibit Chiralityâ€Independent but Orientationâ€Dependent Stabilizing Cooperativity. Chemistry - A European Journal, 2020, 26, 5676-5684.	3.3	8
140	Reconstructing the Origins of the Somatostatin and Allatostatin-C Signaling Systems Using the Accelerated Evolution of Biodiverse Cone Snail Toxins. Molecular Biology and Evolution, 2022, 39, .	8.9	8
141	Monolayers of a de novo designed $4\hat{l}$ -helix bundle carboprotein and partial structures on Au(111)-surfaces. Bioelectrochemistry, 2002, 56, 27-32.	4.6	7
142	Interconversion of Active and Inactive Conformations of Urokinase-Type Plasminogen Activator. Biochemistry, 2012, 51, 7804-7811.	2.5	7
143	Improving membrane binding as a design strategy for amphipathic peptide hormones: 2â€helix variants of PYY3â€36. Journal of Peptide Science, 2012, 18, 579-587.	1.4	7
144	Probing protein phosphatase substrate binding: affinity pull-down of ILKAP phosphatase 2C with phosphopeptides. Molecular BioSystems, 2012, 8, 1452.	2.9	7

#	Article	IF	CITATIONS
145	Site-selective three-component reaction for dual-functionalization of peptides. Chemical Communications, 2013, 49, 1936.	4.1	7
146	Synergy of Two Highly Specific Biomolecular Recognition Events: Aligning an AT-Hook Peptide in DNA Minor Grooves via Covalent Conjugation to 2′-Amino-LNA. Bioconjugate Chemistry, 2018, 29, 1025-1029.	3.6	7
147	Brain-Targeting Delivery of Two Peptidylic Inhibitors for Their Combination Therapy in Transgenic Polyglutamine Disease Mice via Intranasal Administration. Molecular Pharmaceutics, 2018, 15, 5781-5792.	4.6	7
148	Polyamineâ€Functionalized 2â€2â€Amino‣NA in Oligonucleotides: Facile Synthesis of New Monomers and Highâ€Affinity Binding towards ssDNA and dsDNA. Chemistry - A European Journal, 2021, 27, 1416-1422.	3.3	7
149	Chemical synthesis and receptor binding of catfish somatostatin: a disulfide-bridged β-d-Galp-(1â†'3)-α-d-GalpNAcO-glycopeptide*. Chemical Biology and Drug Design, 2000, 55, 81-91.	1.1	6
150	Smallâ€Molecule Affinity Ligands for Protein Purification: Combined Computational Enrichment and Automated Inâ€ine Screening of an Optically Encoded Library. Angewandte Chemie - International Edition, 2010, 49, 3477-3480.	13.8	6
151	The road to the first, fully active and more stable human insulin variant with an additional disulfide bond. Journal of Peptide Science, 2015, 21, 797-806.	1.4	6
152	Peptideâ€Stabilized, Fluorescent Silver Nanoclusters: Solidâ€Phase Synthesis and Screening. Chemistry - A European Journal, 2016, 22, 18492-18500.	3.3	6
153	Synthesis of N-Methylated Peptides: On-Resin Methylation and Microwave-Assisted Couplings. Methods in Molecular Biology, 2013, 1047, 141-149.	0.9	6
154	Synthesis of C-Terminal Peptide Thioesters Using Fmoc-Based Solid-Phase Peptide Chemistry. Methods in Molecular Biology, 2013, 1047, 119-129.	0.9	6
155	Farnesylated peptides in model membranes: a biophysical investigation. European Biophysics Journal, 2003, 33, 300-9.	2.2	5
156	THAL, a Sterically Unhindered Linker for the Solid-Phase Synthesis of Acid-Sensitive Protected Peptide Acids. Journal of Organic Chemistry, 2008, 73, 7342-7344.	3.2	5
157	<i>Leonidas Zervas award lecture: </i> Abiotic ligands for new quaternary architectures of peptides and proteins. Journal of Peptide Science, 2013, 19, 537-544.	1.4	5
158	Ultramild Proteinâ∈Mediated Click Chemistry Creates Efficient Oligonucleotide Probes for Targeting and Detecting Nucleic Acids. ChemBioChem, 2015, 16, 1163-1167.	2.6	5
159	Bioimaging and Biodistribution of the Metalâ€lonâ€Controlled Selfâ€Assembly of PYY 3–36 Studied by SPECT/CT. ChemBioChem, 2020, 21, 3338-3348.	2.6	5
160	Membrane anchoring facilitates colocalization of enzymes in plant cytochrome P450 redox systems. Communications Biology, 2021, 4, 1057.	4.4	4
161	Microwave-Assisted Solid-Phase Peptide Synthesis Using the Biotage Syro Waveâ,,¢. Methods in Molecular Biology, 2013, 1047, 225-234.	0.9	4
162	Backbone Amide Linker (BAL) Strategy for Solid-Phase Synthesis. , 2001, , 121-138.		3

#	Article	IF	CITATIONS
163	Steric Effects in Release of Amides from Linkers in Solid-Phase Synthesis. Molecular Mechanics Modeling of Key Step in Peptide and Combinatorial Chemistry. International Journal of Peptide Research and Therapeutics, 2006, 12, 335-339.	1.9	3
164	Peptide Architecture: Adding an αâ€Helix to the PYY Lysine Side Chain Provides Nanomolar Binding and Bodyâ€Weight‣owering Effects. ChemMedChem, 2010, 5, 545-551.	3.2	3
165	Construction of Insulin 18â€mer Nanoassemblies Driven by Coordination to Iron(II) and Zinc(II) Ions at Distinct Sites. Angewandte Chemie, 2016, 128, 2424-2427.	2.0	3
166	Controlling the fractal dimension in self-assembly of terpyridine modified insulin by Fe ²⁺ and Eu ³⁺ to direct <i>in vivo</i> effects. Nanoscale, 2021, 13, 8467-8473.	5.6	3
167	Highly Selective Lysine Acylation in Proteins Using a Lysâ€His Tag Sequence. Chemistry - A European Journal, 2022, 28, .	3.3	3
168	X-Ray Crystal Structure of a Highly Functionalized Thiophene as a New Backbone Amide Linker for Solid-phase Peptide Synthesis. Relationship between Crystal Structure and Reactivity. International Journal of Peptide Research and Therapeutics, 2007, 13, 209-212.	1.9	2
169	Chemoselectivity and Glyconanoparticles. ACS Symposium Series, 2011, , 37-48.	0.5	2
170	A de Novoâ€Designed Monomeric, Compact Threeâ€Helixâ€Bundle Protein on a Carbohydrate Template. ChemBioChem, 2015, 16, 1905-1918.	2.6	2
171	Expression, Receptor Binding, and Biophysical Characterization of Guinea Pig Insulin desB30: A Monomeric Insulin Variant. ChemBioChem, 2015, 16, 954-958.	2.6	2
172	Distinctive binding modes and inhibitory mechanisms of two peptidic inhibitors of urokinase-type plasminogen activator with isomeric P1 residues. International Journal of Biochemistry and Cell Biology, 2015, 62, 88-92.	2.8	2
173	Safetyâ€catch linkers for Fmoc solidâ€phase synthesis of peptide thioesters and hydrazides by amideâ€toâ€imide activation. Journal of Peptide Science, 2021, 27, e3364.	1.4	2
174	Peptide Release, Side-Chain Deprotection, Work-Up, and Isolation. Methods in Molecular Biology, 2013, 1047, 43-63.	0.9	2
175	Backbone Amide Linker Strategy: Protocols for the Synthesis of C-Terminal Peptide Aldehydes. Methods in Molecular Biology, 2013, 1047, 131-139.	0.9	2
176	Metal-ion coordinated self-assembly of human insulin directs kinetics of insulin release as determined by preclinical SPECT/CT imaging. Journal of Controlled Release, 2022, 343, 347-360.	9.9	2
177	Highâ€Performance Reversedâ€Phase Flash Chromatography Purification of Peptides and Chemically Modified Insulins. ChemBioChem, 2021, 22, 1818-1822.	2.6	1
178	O-Glycosylations under Neutral or Basic Conditions ChemInform, 2003, 34, no.	0.0	0
179	Phosphopeptide Proteomics with On-Bead Chemical Synthesis and Display on PEGA Support. , 2006, , 777-778.		0
180	Inside Cover: Identification of Anchor Points for Chemical Modification of a Small Cysteineâ∈Rich Protein by Using a Cysteine Scan (ChemBioChem 16/2011). ChemBioChem, 2011, 12, 2378-2378.	2.6	0

#	Article	IF	CITATIONS
181	Peptide Synthesis., 2012,, 1-16.		О
182	Lipid-Anchored Ras is Sorted by Membrane Curvature Both InÂVitro and in Living Cells. Biophysical Journal, 2013, 104, 96a.	0.5	0
183	Sorting of tN-Ras by Membrane Curvature in Lipid Vesicles and Tubes. Biophysical Journal, 2013, 104, 549a.	0.5	O
184	How Membrane Curvature Drives the Up-Concentration of N-Ras Proteins to Ordered Lipid Domains: Correlation of In Vivo and In Vitro Experiments with Mean Field Theory Calculations and Coarse Grain Simulations. Biophysical Journal, 2014, 106, 713a.	0.5	0
185	Frontispiece: The ABC of Insulin: The Organic Chemistry of a Small Protein. Chemistry - A European Journal, 2020, 26, .	3.3	0
186	Synthesis and Characterization of Adamantaneâ€Containing Heteropeptides with a Chirality Switch. European Journal of Organic Chemistry, 2020, 2020, 815-820.	2.4	0
187	General Solid-Phase Phosphopeptide Proteomis with Affinity Pull-Down. Advances in Experimental Medicine and Biology, 2009, 611, 215-216.	1.6	0
188	Solid-phase synthesis of peptide aldehydes by a Backbone Amide Linker (BAL) strategy. , 2002, , 100-101.		0