
Lorenzo Vannozzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8868582/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biohybrid Microrobots. , 2022, , 305-347.		1
2	RGD-Functionalized Hydrogel Supports the Chondrogenic Commitment of Adipose Mesenchymal Stromal Cells. Gels, 2022, 8, 382.	2.1	8
3	Primers for the Adhesion of Gellan Gumâ€Based Hydrogels to the Cartilage: A Comparative Study. Macromolecular Bioscience, 2022, 22, .	2.1	8
4	Wear Behavior Characterization of Hydrogels Constructs for Cartilage Tissue Replacement. Materials, 2021, 14, 428.	1.3	11
5	Graphene Oxideâ€Doped Gellan Gum–PEGDA Bilayered Hydrogel Mimicking the Mechanical and Lubrication Properties of Articular Cartilage. Advanced Healthcare Materials, 2021, 10, e2001434.	3.9	41
6	Monolithic Three-Dimensional Functionally Graded Hydrogels for Bioinspired Soft Robots Fabrication. Soft Robotics, 2021, , .	4.6	10
7	Cartilage Substitutes: Graphene Oxideâ€Đoped Gellan Gum–PEGDA Bilayered Hydrogel Mimicking the Mechanical and Lubrication Properties of Articular Cartilage (Adv. Healthcare Mater. 7/2021). Advanced Healthcare Materials, 2021, 10, 2170029.	3.9	0
8	Thermal Analysis of Paraffin-Embedded Tissue Blocks for Anatomic Pathology Processes. Journal of Biomechanical Engineering, 2021, 143, .	0.6	0
9	Piezoelectric Nanomaterials Activated by Ultrasound: The Pathway from Discovery to Future Clinical Adoption. ACS Nano, 2021, 15, 11066-11086.	7.3	102
10	Graphene Oxide and Reduced Graphene Oxide Nanoflakes Coated with Glycol Chitosan, Propylene Glycol Alginate, and Polydopamine: Characterization and Cytotoxicity in Human Chondrocytes. Nanomaterials, 2021, 11, 2105.	1.9	18
11	Effects of the 3D Geometry Reconstruction on the Estimation of 3D Porous Scaffold Permeability. , 2021, 2021, 4403-4407.		1
12	Combined Effects of Electrical Stimulation and Protein Coatings on Myotube Formation in a Soft Porous Scaffold. Annals of Biomedical Engineering, 2020, 48, 734-746.	1.3	9
13	A Coupled FEMâ€SPH Modeling Technique to Investigate the Contractility of Biohybrid Thin Films. Advanced Biology, 2020, 4, e1900306.	3.0	6
14	Novel Ultrathin Films Based on a Blend of PEG- <i>b</i> PCL and PLLA and Doped with ZnO Nanoparticles. ACS Applied Materials & Interfaces, 2020, 12, 21398-21410.	4.0	26
15	Fabrication, Characterization, and Properties of Poly (Ethylene-Co-Vinyl Acetate) Composite Thin Films Doped with Piezoelectric Nanofillers. Nanomaterials, 2019, 9, 1182.	1.9	14
16	Small-caliber vascular grafts based on a piezoelectric nanocomposite elastomer: Mechanical properties and biocompatibility. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 97, 138-148.	1.5	18
17	Biohybrid Actuators Based on Skeletal Muscle-Powered Microgrooved Ultrathin Films Consisting of Poly(styrene- <i>block</i> -butadiene- <i>block</i> -styrene). ACS Biomaterials Science and Engineering, 2019, 5, 5734-5743.	2.6	30
18	Nanocomposite thin films for triggerable drug delivery. Expert Opinion on Drug Delivery, 2018, 15, 509-522.	2.4	15

LORENZO VANNOZZI

#	Article	IF	CITATIONS
19	Selfâ€Folded Hydrogel Tubes for Implantable Muscular Tissue Scaffolds. Macromolecular Bioscience, 2018, 18, e1700377.	2.1	57
20	3D porous polyurethanes featured by different mechanical properties: Characterization and interaction with skeletal muscle cells. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 75, 147-159.	1.5	32
21	Nanostructured ultra-thin patches for ultrasound-modulated delivery of anti-restenotic drug. International Journal of Nanomedicine, 2016, 11, 69.	3.3	30
22	Microgrooved ultra-thin films as building blocks of future bio-hybrid actuators. , 2015, 2015, 354-7.		2
23	Advanced Micro-Nano-Bio Systems for Future Targeted Therapies. Current Nanoscience, 2015, 11, 144-160.	0.7	42
24	Electrical and Mechanical Characterisation of Single Wall Carbon Nanotubes Based Composites for Tissue Engineering Applications. Journal of Nanoscience and Nanotechnology, 2013, 13, 188-197.	0.9	22