
Paul R Clarke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8868454/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nature Cell Biology, 2003, 5, 647-654.	4.6	421
2	Spatial and temporal coordination of mitosis by Ran GTPase. Nature Reviews Molecular Cell Biology, 2008, 9, 464-477.	16.1	390
3	Purification and characterization of the AMP-activated protein kinase. Copurification of acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl-CoA reductase kinase activities. FEBS Journal, 1989, 186, 129-136.	0.2	369
4	Phosphorylation of Mcl-1 by CDK1–cyclin B1 initiates its Cdc20-dependent destruction during mitotic arrest. EMBO Journal, 2010, 29, 2407-2420.	3.5	297
5	Phosphorylation of Caspase-9 by CDK1/Cyclin B1 Protects Mitotic Cells against Apoptosis. Molecular Cell, 2007, 26, 301-310.	4.5	211
6	Chromatin-Independent Nuclear Envelope Assembly Induced by Ran GTPase in Xenopus Egg Extracts. Science, 2000, 288, 1429-1432.	6.0	201
7	Apoptosis and autophagy: Regulation of caspaseâ€9 by phosphorylation. FEBS Journal, 2009, 276, 6063-6073.	2.2	176
8	Regulation of apoptosis by BH3 domains in a cell-free system. Current Biology, 1997, 7, 913-920.	1.8	168
9	Cell-cycle control in the face of damage – a matter of life or death. Trends in Cell Biology, 2009, 19, 89-98.	3.6	124
10	Bcl-2 regulates amplification of caspase activation by cytochrome c. Current Biology, 1999, 9, 147-150.	1.8	122
11	Ran GTPase: a master regulator of nuclear structure and function during the eukaryotic cell division cycle?. Trends in Cell Biology, 2001, 11, 366-371.	3.6	115
12	Inhibition of the G2 DNA Damage Checkpoint and of Protein Kinases Chk1 and Chk2 by the Marine Sponge Alkaloid Debromohymenialdisine. Journal of Biological Chemistry, 2001, 276, 17914-17919.	1.6	111
13	Targeting of RCC1 to Chromosomes Is Required for Proper Mitotic Spindle Assembly in Human Cells. Current Biology, 2002, 12, 1442-1447.	1.8	110
14	Bcl-2 regulates a caspase-3/caspase-2 apoptotic cascade in cytosolic extracts. Oncogene, 1999, 18, 1781-1787.	2.6	107
15	Evidence for a protein kinase cascade in higher plants. 3-Hydroxy-3-methylglutaryl-CoA reductase kinase. FEBS Journal, 1992, 209, 923-931.	0.2	105
16	DYRK1A phosphorylates caspase 9 at an inhibitory site and is potently inhibited in human cells by harmine. FEBS Journal, 2008, 275, 6268-6280.	2.2	104
17	DNA-dependent phosphorylation of Chk1 and Claspin in a human cell-free system. Biochemical Journal, 2005, 388, 705-712.	1.7	87
18	Role of Importin-β in the Control of Nuclear Envelope Assembly by Ran. Current Biology, 2002, 12, 498-502.	1.8	83

PAUL R CLARKE

#	Article	IF	CITATIONS
19	Protein Kinase A Regulates Caspase-9 Activation by Apaf-1 Downstream of Cytochrome c. Journal of Biological Chemistry, 2005, 280, 15449-15455.	1.6	79
20	Phosphorylation Regulates the Dynamic Interaction of RCC1 with Chromosomes during Mitosis. Current Biology, 2004, 14, 1099-1104.	1.8	76
21	Cyclin B1 is localized to unattached kinetochores and contributes to efficient microtubule attachment and proper chromosome alignment during mitosis. Cell Research, 2008, 18, 268-280.	5.7	76
22	Roles of Ran–GTP and Ran–GDP in precursor vesicle recruitment and fusion during nuclear envelope assembly in a human cell-free system. Current Biology, 2001, 11, 208-212.	1.8	73
23	Cleavage of Rabaptin-5 blocks endosome fusion during apoptosis. EMBO Journal, 1997, 16, 6182-6191.	3.5	70
24	Clathrin recruits phosphorylated TACC3 to spindle poles for bipolar spindle assembly and chromosome alignment. Journal of Cell Science, 2010, 123, 3645-3651.	1.2	68
25	Regulation of Caspase 9 through Phosphorylation by Protein Kinase C Zeta in Response to Hyperosmotic Stress. Molecular and Cellular Biology, 2005, 25, 10543-10555.	1.1	64
26	Many Fingers on the Mitotic Trigger: Post-Translational Regulation of the Cdc25C Phosphatase. Cell Cycle, 2004, 3, 40-44.	1.3	62
27	Substrate specificity determinants of the checkpoint protein kinase Chk1. FEBS Letters, 2000, 466, 91-95.	1.3	49
28	Bcl-2 regulates activation of apoptotic proteases in a cell-free system. Current Biology, 1996, 6, 997-1005.	1.8	47
29	Concentration of Ran on chromatin induces decondensation, nuclear envelope formation and nuclear pore complex assembly. European Journal of Cell Biology, 2002, 81, 623-633.	1.6	47
30	Okadaic acid-sensitive protein phosphatases dephosphorylate MARCKS, a major protein kinase C substrate. FEBS Letters, 1993, 336, 37-42.	1.3	42
31	Cellular responses to a prolonged delay in mitosis are determined by a DNA damage response controlled by Bcl-2 family proteins. Open Biology, 2015, 5, 140156.	1.5	42
32	Signal Transduction: Switching off MAP kinases. Current Biology, 1994, 4, 647-650.	1.8	41
33	p38α- and DYRK1A-dependent phosphorylation of caspase-9 at an inhibitory site in response to hyperosmotic stress. Cellular Signalling, 2009, 21, 1626-1633.	1.7	41
34	Cleavage of Claspin by Caspase-7 during Apoptosis Inhibits the Chk1 Pathway. Journal of Biological Chemistry, 2005, 280, 35337-35345.	1.6	40
35	Regulation of Cdc2/Cyclin B Activation in Xenopus Egg Extracts via Inhibitory Phosphorylation of Cdc25C Phosphatase by Ca2+/Calmodium-dependent Kinase II. Molecular Biology of the Cell, 2003, 14, 4003-4014.	0.9	39
36	Phosphorylation of Crm1 by CDK1-cyclin B promotes Ran-dependent mitotic spindle assembly. Journal of Cell Science, 2013, 126, 3417-28.	1.2	38

PAUL R CLARKE

#	Article	IF	CITATIONS
37	The importin-β P446L dominant-negative mutant protein loses RanGTP binding ability and blocks the formation of intact nuclear envelope. Journal of Cell Science, 2002, 115, 1675-1687.	1.2	38
38	Ran alters nuclear pore complex conformation. Journal of Molecular Biology, 2000, 300, 519-529.	2.0	36
39	hnRNP-U is a specific DNA-dependent protein kinase substrate phosphorylated in response to DNA double-strand breaks. Biochemical and Biophysical Research Communications, 2009, 381, 59-64.	1.0	34
40	Prolonged mitotic arrest induces a caspase-dependent DNA damage response at telomeres that determines cell survival. Scientific Reports, 2016, 6, 26766.	1.6	34
41	The Docking Interaction of Caspase-9 with ERK2 Provides a Mechanism for the Selective Inhibitory Phosphorylation of Caspase-9 at Threonine 125. Journal of Biological Chemistry, 2008, 283, 3854-3865.	1.6	33
42	Atypical APC/Câ€dependent degradation of Mclâ€1 provides an apoptotic timer during mitotic arrest. EMBO Journal, 2018, 37, .	3.5	32
43	Cell Biology: Ran, Mitosis and the Cancer Connection. Current Biology, 2006, 16, R466-R468.	1.8	31
44	The importin-beta P446L dominant-negative mutant protein loses RanGTP binding ability and blocks the formation of intact nuclear envelope. Journal of Cell Science, 2002, 115, 1675-87.	1.2	31
45	Regulation of Claspin degradation by the ubiquitin-proteosome pathway during the cell cycle and in response to ATR-dependent checkpoint activation. FEBS Letters, 2006, 580, 4176-4181.	1.3	29
46	RCC1 isoforms differ in their affinity for chromatin, molecular interactions and regulation by phosphorylation. Journal of Cell Science, 2007, 120, 3436-3445.	1.2	29
47	The methylated N-terminal tail of RCC1 is required for stabilisation of its interaction with chromatin by Ran in live cells. BMC Cell Biology, 2010, 11, 43.	3.0	29
48	Microtubule assembly by the Apc protein is regulated by importin-β—RanGTP. Journal of Cell Science, 2010, 123, 736-746.	1.2	27
49	USP9X Limits Mitotic Checkpoint Complex Turnover to Strengthen the Spindle Assembly Checkpoint and Guard against Chromosomal Instability. Cell Reports, 2018, 23, 852-865.	2.9	27
50	Dynamic localisation of Ran GTPase during the cell cycle. BMC Cell Biology, 2009, 10, 66.	3.0	26
51	Cyclin-Dependent Kinases: CAK-handed kinase activation. Current Biology, 1995, 5, 40-42.	1.8	25
52	Dephosphorylation of the inhibitory phosphorylation site S287 in Xenopus Cdc25C by protein phosphatase-2A is inhibited by 14-3-3 binding. FEBS Letters, 2002, 528, 267-271.	1.3	22
53	CELL BIOLOGY: A Gradient Signal Orchestrates the Mitotic Spindle. Science, 2005, 309, 1334-1335.	6.0	21
54	XMog1, a nuclear Ran-binding protein in <i>Xenopus</i> , is a functional homologue of <i>Schizosaccharomyces pombe</i> Mog1p that co-operates with RanBP1 to control generation of Ran-CTP. Journal of Cell Science, 2001, 114, 3013-3023.	1.2	18

PAUL R CLARKE

#	Article	IF	CITATIONS
55	Chromatin-bound NLS proteins recruit membrane vesicles and nucleoporins for nuclear envelope assembly via importin-α/β. Cell Research, 2012, 22, 1562-1575.	5.7	16
56	Calmodulin-dependent multiprotein kinase and protein kinase C phosphorylate the same site on HMG-CoA reductase as the AMP-activated protein kinase. FEBS Letters, 1990, 269, 213-217.	1.3	14
57	Phosphorylation of importin- $\hat{l}\pm 1$ by CDK1-cyclin B controls mitotic spindle assembly. Journal of Cell Science, 2019, 132, .	1.2	14
58	Nuclear Pores: Sowing the Seeds of Assembly on the Chromatin Landscape. Current Biology, 2003, 13, R970-R972.	1.8	11
59	Claspin is phosphorylated in the Chk1-binding domain by a kinase distinct from Chk1. Biochemical and Biophysical Research Communications, 2008, 369, 973-976.	1.0	11
60	Phosphorylation of XIAP by CDK1-cyclin B controls mitotic cell death. Journal of Cell Science, 2017, 130, 502-511.	1.2	11
61	Spatial and temporal control of nuclear envelope assembly by Ran GTPase. Symposia of the Society for Experimental Biology, 2004, , 193-204.	0.0	11
62	[29] Adenosine monophosphate-activated protein kinase: Hydroxymethylglutaryl-CoA reductase kinase. Methods in Enzymology, 1991, 200, 362-371.	0.4	10
63	The Crm de la crème of mitosis. Nature Cell Biology, 2005, 7, 551-552.	4.6	7
64	Timed degradation of Mcl-1 controls mitotic cell death. Molecular and Cellular Oncology, 2018, 5, e1516450.	0.3	7
65	A Mitotic Role for BRCA1/BARD1 in Tumor Suppression?. Cell, 2006, 127, 453-455.	13.5	6
66	Signaling to Nuclear Transport. Developmental Cell, 2008, 14, 316-318.	3.1	6
67	Destruction's our delight: Controlling apoptosis during mitotic arrest. Cell Cycle, 2010, 9, 4035-4036.	1.3	5
68	Keep it focused: PRMT6 drives the localization of RCC1 to chromosomes to facilitate mitosis, cell proliferation, and tumorigenesis. Molecular Cell, 2021, 81, 1128-1129.	4.5	4
69	A mechanism coupling cell division and the control of apoptosis. SEB Experimental Biology Series, 2008, 59, 257-65.	0.1	3
70	Anchoring RCC1 by the tail. Nature Cell Biology, 2007, 9, 485-487.	4.6	2
71	Mitosis: Ran Scales the Alps of Spindle Formation. Current Biology, 2007, 17, R643-R645.	1.8	2
72	The cdc25 Phosphatase: Biochemistry and Regulation in the Eukaryotic Cell Cycle. Advances in Molecular and Cell Biology, 1995, 13, 151-164.	0.1	0

#	Article	IF	CITATIONS
73	Role of Ran GTPase in Nuclear Envelope Assembly. , 2002, , 61-71.		Ο