List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8868350/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cell cycle regulation: p53-p21-RB signaling. Cell Death and Differentiation, 2022, 29, 946-960.	5.0	293
2	Ki-67 gene expression. Cell Death and Differentiation, 2021, 28, 3357-3370.	5.0	92
3	DNA Affinity Purification: A Pulldown Assay for Identifying and Analyzing Proteins Binding to Nucleic Acids. Methods in Molecular Biology, 2021, 2267, 81-90.	0.4	3
4	N- and O-glycosylation patterns and functional testing of CGB7 versus CGB3/5/8 variants of the human chorionic gonadotropin (hCG) beta subunit. Glycoconjugate Journal, 2020, 37, 599-610.	1.4	4
5	The Role of IncRNAs TAPIR-1 and -2 as Diagnostic Markers and Potential Therapeutic Targets in Prostate Cancer. Cancers, 2020, 12, 1122.	1.7	15
6	DREAM and RB cooperate to induce gene repression and cell-cycle arrest in response to p53 activation. Nucleic Acids Research, 2019, 47, 9087-9103.	6.5	61
7	The Special AT-rich Sequence Binding Protein 1 (SATB1) and its role in solid tumors. Cancer Letters, 2018, 417, 96-111.	3.2	22
8	Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death and Differentiation, 2018, 25, 114-132.	5.0	463
9	Human papilloma virus E7 oncoprotein abrogates the p53-p21-DREAM pathway. Scientific Reports, 2017, 7, 2603.	1.6	70
10	Timing of transcription during the cell cycle: Protein complexes binding to E2F, E2F/CLE, CDE/CHR, or CHR promoter elements define early and late cell cycle gene expression. Oncotarget, 2017, 8, 97736-97748.	0.8	44
11	The p53-p21-DREAM-CDE/CHR pathway regulates G ₂ /M cell cycle genes. Nucleic Acids Research, 2016, 44, 164-174.	6.5	318
12	Stopping cells from dividing. Aging, 2016, 8, 425-426.	1.4	0
13	Cyclin F suppresses B-Myb activity to promote cell cycle checkpoint control. Nature Communications, 2015, 6, 5800.	5.8	57
14	Simplify p53: just an activator. Oncotarget, 2015, 6, 3-4.	0.8	6
15	Indirect p53-dependent transcriptional repression of <i>Survivin, CDC25C,</i> and <i>PLK1</i> genes requires the cyclin-dependent kinase inhibitor p21/CDKN1A and CDE/CHR promoter sites binding the DREAM complex. Oncotarget, 2015, 6, 41402-41417.	0.8	48
16	Polo-like kinase 4 transcription is activated via CRE and NRF1 elements, repressed by DREAM through CDE/CHR sites and deregulated by HPV E7 protein. Nucleic Acids Research, 2014, 42, 163-180.	6.5	48
17	The transcription factor p53: Not a repressor, solely an activator. Cell Cycle, 2014, 13, 3037-3058.	1.3	119
18	The CHR site: definition and genome-wide identification of a cell cycle transcriptional element. Nucleic Acids Research, 2014, 42, 10331-10350.	6.5	82

#	Article	IF	CITATIONS
19	Cell cycle, oncogenic and tumor suppressor pathways regulate numerous long and macro non-protein-coding RNAs. Genome Biology, 2014, 15, R48.	13.9	37
20	The Forkhead Transcription Factor FOXM1 Controls Cell Cycle-Dependent Gene Expression through an Atypical Chromatin Binding Mechanism. Molecular and Cellular Biology, 2013, 33, 227-236.	1.1	185
21	The CHR promoter element controls cell cycle-dependent gene transcription and binds the DREAM and MMB complexes. Nucleic Acids Research, 2012, 40, 1561-1578.	6.5	90
22	p53 can repress transcription of cell cycle genes through a p21 ^{WAF1/CIP1} -dependent switch from MMB to DREAM protein complex binding at CHR promoter elements. Cell Cycle, 2012, 11, 4661-4672.	1.3	88
23	p53 Signature and Serous Tubal In-situ Carcinoma in Cases of Primary Tubal and Peritoneal Carcinomas and Serous Borderline Tumors of the Ovary. International Journal of Gynecological Pathology, 2011, 30, 417-424.	0.9	52
24	p53 activates the PANK1/ miRNA-107 gene leading to downregulation of CDK6 and p130 cell cycle proteins. Nucleic Acids Research, 2011, 39, 440-453.	6.5	75
25	The tumor suppressor p53 induces expression of the pregnancy-supporting human chorionic gonadotropin (hCG) <i>CGB7</i> gene. Cell Cycle, 2011, 10, 3758-3767.	1.3	19
26	The central role of CDE/CHR promoter elements in the regulation of cell cycleâ€dependent gene transcription. FEBS Journal, 2010, 277, 877-893.	2.2	105
27	The retinal dehydrogenase/reductase <i>retSDR1/DHRS3</i> gene is activated by p53 and p63 but not by mutants derived from tumors or EEC/ADULT malformation syndromes. Cell Cycle, 2010, 9, 2177-2188.	1.3	39
28	Human Chorionic Gonadotropin Attracts Regulatory T Cells into the Fetal-Maternal Interface during Early Human Pregnancy. Journal of Immunology, 2009, 182, 5488-5497.	0.4	271
29	Identification of two regulatory binding sites which confer myotube specific expression of the mono-ADP-ribosyltransferase ART1 gene. BMC Molecular Biology, 2008, 9, 91.	3.0	11
30	The CCN3 gene coding for an extracellular adhesion-related protein is transcriptionally activated by the p53 tumor suppressor. Cell Cycle, 2008, 7, 1254-1261.	1.3	16
31	Transcriptional activation of the tumor suppressor and differentiation gene S100A2 by a novel p63-binding site. Nucleic Acids Research, 2008, 36, 2969-2980.	6.5	35
32	RHAMM is differentially expressed in the cell cycle and downregulated by the tumor suppressor p53. Cell Cycle, 2008, 7, 3448-3460.	1.3	100
33	Expression of Cyclin-Dependent Kinase Subunit 1 (Cks1) is Regulated During the Cell Cycle by a CDE/CHR Tandem Element and is Downregulated by p53 but Not by p63 or p73. Cell Cycle, 2007, 6, 853-862.	1.3	27
34	Gene expression ofcyclin-dependent kinase subunit Cks2is repressed by the tumor suppressor p53 but not by the related proteins p63 or p73. FEBS Letters, 2007, 581, 1166-1172.	1.3	31
35	Cell cycleâ€dependent transcription of <i>cyclin B2</i> is influenced by DNA methylation but is independent of methylation in the CDE and CHR elements. FEBS Journal, 2007, 274, 5235-5249.	2.2	14
36	Human cyclin B3. mRNA expression during the cell cycle and identification of three novel nonclassical nuclear localization signals. FEBS Journal, 2006, 273, 1681-1695.	2.2	20

#	Article	IF	CITATIONS
37	Genomic organization and expression of the human mono-ADP-ribosyltransferase ART3 gene. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2006, 1759, 270-280.	2.4	7
38	Chimpanzee, Orangutan, Mouse, and Human Cell Cycle Promoters Exempt CCAAT Boxes and CHR Elements from Interspecies Differences. Molecular Biology and Evolution, 2006, 24, 814-826.	3.5	13
39	Analysis of mono-ADP-ribosyltransferase 4 gene expression in human monocytes: Splicing pattern and potential regulatory elements. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2005, 1730, 173-186.	2.4	7
40	TAp63γ can substitute for p53 in inducing expression of themaspintumor suppressor. International Journal of Cancer, 2005, 114, 555-562.	2.3	20
41	The p53-family members p63 and p73 inhibit insulin-like growth factor-I receptor gene expression in colon cancer cells. Growth Hormone and IGF Research, 2005, 15, 388-396.	0.5	51
42	Identification of Tcf-4 as a transcriptional target of p53 signalling. Oncogene, 2004, 23, 3376-3384.	2.6	60
43	SIRF—a novel regulator element controlling transcription from the p55Cdc/Fizzy promoter during the cell cycle. Biochemical and Biophysical Research Communications, 2004, 320, 951-960.	1.0	9
44	Cyclin B1transcription is enhanced by the p300 coactivator and regulated during the cell cycle by a CHR-dependent repression mechanism. FEBS Letters, 2003, 536, 66-70.	1.3	55
45	Three CCAAT-boxes and a single cell cycle genes homology region (CHR) are the major regulating sites for transcription from the human cyclin B2 promoter. Gene, 2003, 312, 225-237.	1.0	53
46	Interactions between p300 and Multiple NF-Y Trimers Govern Cyclin B2 Promoter Function. Journal of Biological Chemistry, 2003, 278, 6642-6650.	1.6	68
47	A single cell cycle genes homology region (CHR) controls cell cycle-dependent transcription of the cdc25C phosphatase gene and is able to cooperate with E2F or Sp1/3 sites. Nucleic Acids Research, 2002, 30, 1967-1976.	6.5	40
48	Differential regulation of transcription and induction of programmed cell death by human p53-family members p63 and p73. FEBS Letters, 2002, 525, 93-99.	1.3	56
49	Expression of the Cell Cycle Phosphatase cdc25C Is Down-Regulated by the Tumor Suppressor Protein p53 but Not by p73. Biochemical and Biophysical Research Communications, 2001, 284, 743-750.	1.0	58
50	Expression of the p53 homologues p63 and p73 in multiple simultaneous gastric cancer. Journal of Pathology, 2001, 195, 163-170.	2.1	56
51	NF-Y Mediates the Transcriptional Inhibition of thecyclin B1, cyclin B2, and cdc25CPromoters upon Induced G2 Arrest. Journal of Biological Chemistry, 2001, 276, 5570-5576.	1.6	153
52	Regulation and Possible Function of β-Catenin in Human Monocytes. Journal of Immunology, 2001, 167, 6786-6793.	0.4	32
53	Decreased expression of p27 protein is associated with advanced tumor stage in hepatocellular carcinoma. International Journal of Cancer, 2000, 89, 350-355.	2.3	104
54	A CDE/CHR tandem element regulates cell cycle-dependent repression ofcyclin B2transcription. FEBS Letters, 2000, 484, 77-81.	1.3	49

#	Article	IF	CITATIONS
55	P53 tumor suppressor family members can repress transcription of the CDC25C cell cycle phosphatase. Gastroenterology, 2000, 118, A48.	0.6	0
56	The cyclin B2 promoter depends on NF-Y, a trimer whose CCAAT-binding activity is cell-cycle regulated. Oncogene, 1999, 18, 1845-1853.	2.6	118
57	Cyclooxygenase-2 Transcription Is Stimulated and Amylase Secretion Is Inhibited in Pancreatic Acinar Cells after Induction of Acute Pancreatitis. Biochemical and Biophysical Research Communications, 1999, 265, 545-549.	1.0	26
58	A new model of cell cycle-regulated transcription: repression of the cyclin A promoter by CDF-1 and anti-repression by E2F. Oncogene, 1998, 16, 2957-2963.	2.6	77
59	Regulation of transcription of the two cyclooxygenase isoforms in pancreas acini. Gastroenterology, 1998, 114, A512.	0.6	0
60	Multiple Proteins Interact with the Nuclear Inhibitory Protein Repressor Element in the Human Interleukin-3 Promoter. Journal of Biological Chemistry, 1995, 270, 24572-24579.	1.6	16
61	Cell cycle regulation ofcdc25Ctranscription is mediated by the periodic repression of the glutamine-rich activators NF-Y and Sp1. Nucleic Acids Research, 1995, 23, 3822-3830.	6.5	96
62	Evidence for Domain Structures of the Trifunctional Protein and the Tetrafunctional Protein Acting in Glyoxysomal Fatty Acid beta-Oxidation. FEBS Journal, 1994, 226, 909-915.	0.2	9
63	Role of arginine 115 in fatty acid activation and formaldehyde dehydrogenase activity of human class III alcohol dehydrogenase. Biochemistry, 1993, 32, 5139-5144.	1.2	16
64	Purification and characterization of a plant peroxisomal Delta2,Delta3-enoyl-CoA isomerase acting on 3-cis-enoyl-CoA and 3-trans-enoyl-CoA. FEBS Journal, 1991, 196, 699-705.	0.2	26
65	Evidence for a peroxisomal fatty acid beta-oxidation involving d-3-hydroxyacyl-CoAs. Characterization of two forms of hydro-lyase that convert d-(-)-3-hydroxyacyl-CoA into 2-trans-enoyl-CoA. FEBS Journal, 1991, 200, 171-178.	0.2	30
66	Characterization of two forms of the multifunctional protein acting in fatty acid Î ² -oxidation. Archives of Biochemistry and Biophysics, 1988, 263, 161-169.	1.4	38
67	The glyoxysomal β-oxidation system in cucumber seedlings: Identification of enzymes required for the degradation of unsaturated fatty acids. Archives of Biochemistry and Biophysics, 1988, 263, 170-177.	1.4	33