
Deborah Yelon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8867532/publications.pdf Version: 2024-02-01

DEBORAH VELON

#	Article	IF	CITATIONS
1	Restricted Expression of Cardiac Myosin Genes Reveals Regulated Aspects of Heart Tube Assembly in Zebrafish. Developmental Biology, 1999, 214, 23-37.	2.0	433
2	The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development (Cambridge), 2011, 138, 3421-3430.	2.5	339
3	casanova encodes a novel Sox-related protein necessary and sufficient for early endoderm formation in zebrafish. Genes and Development, 2001, 15, 1493-1505.	5.9	273
4	Functional Modulation of Cardiac Form through Regionally Confined Cell Shape Changes. PLoS Biology, 2007, 5, e53.	5.6	260
5	Mutation of weak atrium/atrial myosin heavy chain disrupts atrial function and influences ventricular morphogenesis in zebrafish. Development (Cambridge), 2003, 130, 6121-6129.	2.5	241
6	Myocardial Lineage Development. Circulation Research, 2010, 107, 1428-1444.	4.5	237
7	Distinct phases of cardiomyocyte differentiation regulate growth of the zebrafish heart. Development (Cambridge), 2009, 136, 1633-1641.	2.5	234
8	In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature, 2013, 498, 497-501.	27.8	229
9	Vessel and Blood Specification Override Cardiac Potential in Anterior Mesoderm. Developmental Cell, 2007, 13, 254-267.	7.0	201
10	Twoendothelin 1effectors,hand2andbapx1,pattern ventral pharyngeal cartilage and the jaw joint. Development (Cambridge), 2003, 130, 1353-1365.	2.5	194
11	Screening mosaic F1 females for mutations affecting zebrafish heart induction and patterning. Genesis, 1998, 22, 288-299.	2.1	162
12	The Spinster Homolog, Two of Hearts, Is Required for Sphingosine 1-Phosphate Signaling in Zebrafish. Current Biology, 2008, 18, 1882-1888.	3.9	157
13	Organization of cardiac chamber progenitors in the zebrafish blastula. Development (Cambridge), 2004, 131, 3081-3091.	2.5	148
14	Dependence of cardiac trabeculation on neuregulin signaling and blood flow in zebrafish. Developmental Dynamics, 2011, 240, 446-456.	1.8	115
15	Reiterative roles for FGF signaling in the establishment of size and proportion of the zebrafish heart. Developmental Biology, 2008, 321, 397-406.	2.0	113
16	Hand2 elevates cardiomyocyte production during zebrafish heart development and regeneration. Development (Cambridge), 2014, 141, 3112-3122.	2.5	110
17	Cardiac patterning and morphogenesis in zebrafish. Developmental Dynamics, 2001, 222, 552-563.	1.8	102
18	Nkx genes are essential for maintenance of ventricular identity. Development (Cambridge), 2013, 140, 4203-4213.	2.5	93

DEBORAH YELON

#	Article	IF	CITATIONS
19	Hedgehog signaling plays a cell-autonomous role in maximizing cardiac developmental potential. Development (Cambridge), 2008, 135, 3789-3799.	2.5	91
20	Multiple influences of blood flow on cardiomyocyte hypertrophy in the embryonic zebrafish heart. Developmental Biology, 2012, 362, 242-253.	2.0	83
21	Endocardium is necessary for cardiomyocyte movement during heart tube assembly. Development (Cambridge), 2007, 134, 2379-2386.	2.5	77
22	Hand2 ensures an appropriate environment for cardiac fusion by limiting Fibronectin function. Development (Cambridge), 2010, 137, 3215-3220.	2.5	65
23	Early developmental specification of the thyroid gland depends on <i>han</i> -expressing surrounding tissue and on FGF signals. Development (Cambridge), 2007, 134, 2871-2879.	2.5	64
24	The novel transmembrane protein Tmem2 is essential for coordination of myocardial and endocardial morphogenesis. Development (Cambridge), 2011, 138, 4199-4205.	2.5	52
25	Illuminating cardiac development: Advances in imaging add new dimensions to the utility of zebrafish genetics. Seminars in Cell and Developmental Biology, 2007, 18, 27-35.	5.0	49
26	Cadm4 Restricts the Production of Cardiac Outflow Tract Progenitor Cells. Cell Reports, 2014, 7, 951-960.	6.4	43
27	Differential requirement for BMP signaling in atrial and ventricular lineages establishes cardiac chamber proportionality. Developmental Biology, 2009, 328, 472-482.	2.0	39
28	Platelet-derived growth factor (PDGF) signaling directs cardiomyocyte movement toward the midline during heart tube assembly. ELife, 2017, 6, .	6.0	38
29	FGF signaling enforces cardiac chamber identity in the developing ventricle. Development (Cambridge), 2017, 144, 1328-1338.	2.5	36
30	tal1 regulates the formation of intercellular junctions and the maintenance of identity in the endocardium. Developmental Biology, 2013, 383, 214-226.	2.0	35
31	Biomechanical signaling within the developing zebrafish heart attunes endocardial growth to myocardial chamber dimensions. Nature Communications, 2019, 10, 4113.	12.8	33
32	Fluid forces shape the embryonic heart: Insights from zebrafish. Current Topics in Developmental Biology, 2019, 132, 395-416.	2.2	28
33	Hand2 inhibits kidney specification while promoting vein formation within the posterior mesoderm. ELife, 2016, 5, .	6.0	20
34	Pattern Formation: Swimming in Retinoic Acid. Current Biology, 2002, 12, R707-R709.	3.9	13
35	Utilizing Zebrafish to Understand Second Heart Field Development. , 2016, , 193-199.		13
36	Tmem2 regulates cell-matrix interactions that are essential for muscle fiber attachment. Development (Cambridge), 2016, 143, 2965-72.	2.5	11

DEBORAH YELON

#	Article	IF	CITATIONS
37	Tmem2 restricts atrioventricular canal differentiation by regulating degradation of hyaluronic acid. Developmental Dynamics, 2019, 248, 1195-1210.	1.8	10
38	Haematopoietic stem cell-dependent Notch transcription is mediated by p53 through the Histone chaperone Supt16h. Nature Cell Biology, 2020, 22, 1411-1422.	10.3	9
39	<i>osr1</i> couples intermediate mesoderm cell fate with temporal dynamics of vessel progenitor cell differentiation. Development (Cambridge), 2021, 148, .	2.5	8
40	Heart under construction. Nature, 2012, 484, 459-460.	27.8	7
41	Pathways Regulating Establishment and Maintenance of Cardiac Chamber Identity in Zebrafish. Journal of Cardiovascular Development and Disease, 2021, 8, 13.	1.6	6
42	Cardiac function modulates endocardial cell dynamics to shape the cardiac outflow tract. Development (Cambridge), 2020, 147, .	2.5	6
43	Editorial overview: Developmental mechanisms, patterning and organogenesis. Current Opinion in Genetics and Development, 2015, 32, v-viii.	3.3	3
44	Commentary on "The precardiac areas and formation of the tubular heart in the chick embryo―by Stalsberg and DeHaan, 1969. Developmental Biology, 2019, 456, 105-137.	2.0	1
45	Cardiovascular System. Results and Problems in Cell Differentiation, 2002, 40, 298-321.	0.7	1
46	Cardiac Morphogenesis: Crowding and Tension Resolved through Social Distancing. Developmental Cell, 2021, 56, 159-160.	7.0	0
47	Tmem2 regulates cell-matrix interactions that are essential for muscle fiber attachment. Journal of Cell Science, 2016, 129, e1.2-e1.2.	2.0	0