
Aiguo Patrick Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8867400/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Compensation Network Design of CPT Systems for Achieving Maximum Power Transfer Under Coupling Voltage Constraints. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 138-148.	3.7	32
2	Dual-Loop Control Method for CPT System Under Coupling Misalignments and Load Variations. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 4902-4912.	3.7	18
3	Redefining the Channel Bandwidth for Simultaneous Wireless Power and Information Transfer. IEEE Transactions on Industrial Electronics, 2022, 69, 6881-6891.	5.2	3
4	Study of power flow mechanism of capacitive power transfer system based on Poynting vector analysis. International Journal of Electrical Power and Energy Systems, 2022, 134, 107374.	3.3	2
5	Robust Control of IPT System for Constant Current Charging Under Multiple Parameter Perturbations. IEEE Transactions on Industry Applications, 2022, 58, 1168-1178.	3.3	4
6	Metal Object Detection by Monitoring Fifth-Order Harmonic Current of IPT System With Dual Frequency Tuning. IEEE Transactions on Power Electronics, 2022, 37, 2513-2518.	5.4	8
7	Investigation of reactive power distribution between two coils of inductive power transfer system by Poynting vector analysis. International Journal of Electrical Power and Energy Systems, 2022, 136, 107621.	3.3	1
8	Design and Analysis of a CPT System With Extendable Pairs of Electric Field Couplers. IEEE Transactions on Power Electronics, 2022, 37, 7443-7455.	5.4	11
9	Capacitive Power Transfer System With Integrated Wide Bandwidth Communication. IEEE Transactions on Power Electronics, 2022, 37, 8805-8810.	5.4	5
10	A Dynamic Tuning Method for ZPA Frequency Operation of MEU-WPT System by DC Input Voltages Regulation. IEEE Transactions on Power Electronics, 2022, 37, 11369-11381.	5.4	10
11	Concentric-Coil Hybrid IPT System With Improved Tolerance to Coupling and Load Variations. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 4913-4922.	3.7	6
12	Wireless Charger Design of Robot Vacuum Cleaners with Power Repeaters for High Compatibility. Journal of Electromagnetic Analysis and Applications, 2022, 14, 47-64.	0.1	0
13	Multiobjective Parameter Optimization of a Four-Plate Capacitive Power Transfer System. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 2328-2342.	3.7	16
14	A General Mutual Coupling Model of MIMO Capacitive Coupling Interface With Arbitrary Number of Ports. IEEE Transactions on Power Electronics, 2021, 36, 6163-6167.	5.4	19
15	Simultaneous Wireless Power and Information Transfer Based on Phase-Shift Modulation in ICPT System. IEEE Transactions on Energy Conversion, 2021, 36, 629-639.	3.7	10
16	A Wireless Power Method for Deeply Implanted Biomedical Devices via Capacitively Coupled Conductive Power Transfer. IEEE Transactions on Power Electronics, 2021, 36, 1870-1882.	5.4	58
17	Modeling Single-Wire Capacitive Power Transfer System With Strong Coupling to Ground. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 2295-2302.	3.7	19
18	A CPT system with switchable compensation for constant current or voltage output against load and coupling capacitance variations. Electrical Engineering, 2021, 103, 2391-2402.	1.2	5

#	Article	IF	CITATIONS
19	Modular-Based PV System with Contactless Capacitive Power Transfer Interface. , 2021, , .		3
20	A Dual Frequency Tuning Method for Improved Coupling Tolerance of Wireless Power Transfer System. IEEE Transactions on Power Electronics, 2021, 36, 7360-7365.	5.4	25
21	Capacitive Power Transfer System with Double T-type Resonant Network for Mobile Devices Charging/Supply. IEEE Transactions on Power Electronics, 2021, , 1-1.	5.4	23
22	Optimal Load Determination of Capacitor–Inductor Compensated Capacitive Power Transfer System with Curved-Edge Shielding Layer. Electronics (Switzerland), 2021, 10, 2961.	1.8	1
23	Four-plate capacitive power transfer system with different grounding connections. International Journal of Electrical Power and Energy Systems, 2020, 115, 105494.	3.3	9
24	A Push–Pull Parallel Resonant Converter-Based Bidirectional IPT System. IEEE Transactions on Power Electronics, 2020, 35, 2659-2667.	5.4	32
25	Eddy Current Loss and Detuning Effect of Seawater on Wireless Power Transfer. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 909-917.	3.7	46
26	A Sleeve-Type Capacitive Power Transfer System With Different Coupling Arrangements for Rotary Application. IEEE Access, 2020, 8, 69148-69159.	2.6	17
27	An Impedance Matching Network Tuning Method for Constant Current Output Under Mutual Inductance and Load Variation of IPT System. IEEE Transactions on Power Electronics, 2020, 35, 11108-11118.	5.4	14
28	Improving magnetic coupling characteristics of square coupler ICPT system by round corner design. Electrical Engineering, 2020, 102, 1021-1033.	1.2	4
29	Obtaining Maximum Efficiency of Inductive Power-Transfer System by Impedance Matching Based on Boost Converter. IEEE Transactions on Transportation Electrification, 2020, 6, 488-496.	5.3	12
30	Load Effect Analysis and Maximum Power Transfer Tracking of CPT System. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 2836-2848.	3.5	19
31	A Wireless Selective Frequency Hybrid Compensation Network with Constant Power Profile against Pad Misalignment. , 2020, , .		2
32	Numerical Analysis of Reactive Power Distribution between Two Coupled Coils by Poynting Vector. , 2020, , .		1
33	Study of Electric and Magnetic Field Distributions between Two Coupled Plates for Capacitive Power Transfer by Simulation and Practical Measurements. , 2020, , .		2
34	A Comparative Study of Different Compensation Topologies for Capacitive Power Transfer. , 2020, , .		10
35	Simulation Study of Parasitic and Gate-drive Effects on An Autonomous Push-pull Resonant Converter Based IPT System. , 2020, , .		2
36	Modeling and Analysis of Inductive Power Transfer System With Passive Matrix Power Repeater. IEEE Transactions on Industrial Electronics, 2019, 66, 4406-4413.	5.2	14

#	Article	IF	CITATIONS
37	An F-Type Compensated Capacitive Power Transfer System Allowing for Sudden Change of Pickup. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7, 1084-1093.	3.7	26
38	Wireless Power Transfer Across a Metal Barrier by Combined Capacitive and Inductive Coupling. IEEE Transactions on Industrial Electronics, 2019, 66, 4031-4041.	5.2	39
39	Robust \$mu\$ -Synthesis Control of Dual LCL Type IPT System Considering Load and Mutual Inductance Uncertainty. IEEE Access, 2019, 7, 72770-72782.	2.6	12
40	A 3D Wireless Charging Cylinder With Stable Rotating Magnetic Field for Multi-Load Application. IEEE Access, 2019, 7, 35981-35997.	2.6	34
41	A 3D wireless charging cube with externally enhanced magnetic field for extended range of wireless power transfer. Wireless Power Transfer, 2019, 6, 67-76.	0.9	4
42	Simultaneous Wireless Information and Power Transfer in 5G Mobile Networks: A Survey. , 2019, , .		12
43	Improved CPT system with less voltage stress and sensitivity using a stepâ€down transformer on receiving side. IET Power Electronics, 2019, 12, 2634-2641.	1.5	5
44	Study of coupling configurations of capacitive power transfer system with four metal plates. Wireless Power Transfer, 2019, 6, 97-112.	0.9	7
45	A Misalignment-Tolerant Series-Hybrid Wireless EV Charging System With Integrated Magnetics. IEEE Transactions on Power Electronics, 2019, 34, 1276-1285.	5.4	194
46	Field Orientation Based on Current Amplitude and Phase Angle Control for Wireless Power Transfer. IEEE Transactions on Industrial Electronics, 2018, 65, 4758-4770.	5.2	66
47	Load and Mutual Inductance Identification From the Primary Side of Inductive Power Transfer System With Parallel-Tuned Secondary Power Pickup. IEEE Transactions on Power Electronics, 2018, 33, 9952-9962.	5.4	71
48	Wirelessly powered microactuators. , 2018, , .		0
49	Bipedal gait model for precise gait recognition and optimal triggering in foot drop stimulator: a proof of concept. Medical and Biological Engineering and Computing, 2018, 56, 1731-1746.	1.6	5
50	Impedance-Matching Range Extension Method for Maximum Power Transfer Tracking in IPT System. IEEE Transactions on Power Electronics, 2018, 33, 4419-4428.	5.4	60
51	Maximum Efficiency Tracking for Wireless Power Transfer Systems With Dynamic Coupling Coefficient Estimation. IEEE Transactions on Power Electronics, 2018, 33, 5005-5015.	5.4	222
52	Power Flow Control of Capacitive Power Transfer by Soft Switching of Extra Capacitors in Class E Converter. , 2018, , .		3
53	A Capacitive Power Transfer System with a CL Network for Improved System Performance. , 2018, , .		6
54	A Contactless Single-Wire CPT (Capacitive Power Transfer) Power Supply for Driving a Variable		10

Message Sign. , 2018, , .

#	Article	IF	CITATIONS
55	Improving Detachable Ultrasonic Power Transfer System Using Piezoelectric Stack. , 2018, , .		1
56	Study of Maximum Power Delivery to Movable Device in Omnidirectional Wireless Power Transfer System. IEEE Access, 2018, 6, 76153-76164.	2.6	30
57	Effects of Conductive Tissue on Capacitive Wireless Power Transfer. , 2018, , .		4
58	Study of Power Flow in an IPT System Based on Poynting Vector Analysis. Energies, 2018, 11, 165.	1.6	11
59	DC-DC Converter Based Impedance Matching for Maximum Power Transfer of CPT System with High Efficiency. , 2018, , .		9
60	A Simple Brightness and Color Control Method for LED Lighting Based on Wireless Power Transfer. IEEE Access, 2018, 6, 51477-51483.	2.6	11
61	Capacitive Power Transfer System with Reduced Voltage Stress and Sensitivity. Applied Sciences (Switzerland), 2018, 8, 1131.	1.3	11
62	Effect of tuning capacitance of passive power repeaters on power transfer capability of inductive power transfer systems. Wireless Power Transfer, 2018, 5, 97-104.	0.9	1
63	Full-Duplex Communication on the Shared Channel of a Capacitively Coupled Power Transfer System. IEEE Transactions on Power Electronics, 2017, 32, 3229-3239.	5.4	41
64	A DC-Voltage-Controlled Variable Capacitor for Stabilizing the ZVS Frequency of a Resonant Converter for Wireless Power Transfer. IEEE Transactions on Power Electronics, 2017, 32, 2312-2318.	5.4	75
65	Improved wireless power pickup efficiency using CMOS synchronous rectifier with embedded shorting control. Wireless Power Transfer, 2017, 4, 61-68.	0.9	3
66	Modeling and analysis of ultrasonic power transfer system with tightly coupled solid medium. Wireless Power Transfer, 2017, 4, 1-12.	0.9	5
67	Capacitive Power Transfer System With a Mixed-Resonant Topology for Constant-Current Multiple-Pickup Applications. IEEE Transactions on Power Electronics, 2017, 32, 8778-8786.	5.4	60
68	Characterizing regions of attraction for piecewise affine systems by continuity of discrete transition functions. Nonlinear Dynamics, 2017, 90, 2093-2110.	2.7	7
69	A single-wire capacitive power transfer system with large coupling alignment tolerance. , 2017, , .		22
70	Determining the power distribution between two coupled coils based on Poynting vector analysis. , 2017, , .		5
71	The Recognition and Control of Nonideal Soft-Switching Frequency for Wireless Power Transfer System Based on Waveform Identification. IEEE Transactions on Power Electronics, 2017, 32, 6617-6627.	5.4	15
72	Enhancing wireless power transfer capability of inductive power transfer system using matrix power repeater. , 2017, , .		2

5

#	Article	IF	Citations
73	Real-time detection of step direction based on plantar pressure pattern during walk. , 2017, , .		1
74	Extending the inductive power transfer range by using passive power repeaters. , 2017, , .		3
75	Power density distribution analysis of an IPT system based on poynting vector. , 2017, , .		1
76	The effect of matrix power repeaters on magnetic field distribution of IPT systems. , 2017, , .		1
77	A Power Processing Circuit for Indoor Wi-Fi Energy Harvesting for Ultra-Low Power Wireless Sensors. Applied Sciences (Switzerland), 2017, 7, 827.	1.3	6
78	Energy Link Optimization in a Wireless Power Transfer Grid under Energy Autonomy Based on the Improved Genetic Algorithm. Energies, 2016, 9, 682.	1.6	3
79	Determining the maximum power transfer condition for Ultrasonic Power Transfer system. , 2016, , .		3
80	LCL and CL compensations for wireless three phase bi-directional EV charging systems. , 2016, , .		8
81	Stabilising the output voltage of wireless power pickup through parallel tuned DCâ€voltage controlled variable capacitor. Electronics Letters, 2016, 52, 758-759.	0.5	5
82	Accurate steady-state modeling of capacitive-coupling interface of capacitive power transfer systems with cross-coupling. Wireless Power Transfer, 2016, 3, 53-62.	0.9	14
83	Z-Impedance Compensation for Wireless Power Transfer Based on Electric Field. IEEE Transactions on Power Electronics, 2016, 31, 7556-7563.	5.4	83
84	Indoor 2.45 GHz Wi-Fi Energy Harvester With Bridgeless Converter. IEEE Journal on Selected Areas in Communications, 2016, 34, 1536-1549.	9.7	8
85	Mechanical frequency up-conversion for sub-resonance, low-frequency vibration harvesting. Journal of Intelligent Material Systems and Structures, 2016, 27, 2145-2159.	1.4	20
86	Wireless Power Supply for ICP Devices With Hybrid Supercapacitor and Battery Storage. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4, 273-279.	3.7	40
87	A Shared Channel Design for the Power and Signal Transfers of Electric-field Coupled Power Transfer Systems. Journal of Power Electronics, 2016, 16, 805-814.	0.9	9
88	Cross coupling effects of poly-phase bi-directional inductive power transfer systems used for EV charging. , 2015, , .		7
89	Preliminary development of an ultra low power electro-permanent magnet based actuator for microfluidic systems. , 2015, , .		Ο
90	Autonomous Polyphase Current-Fed Push–Pull Resonant Converter Based on Ring Coupled Oscillators. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3, 568-576.	3.7	9

#	Article	IF	CITATIONS
91	Theoretical modeling and analysis of a wireless Ultrasonic Power Transfer system. , 2015, , .		2
92	Steady-State Load Identification Method of Inductive Power Transfer System Based on Switching Capacitors. IEEE Transactions on Power Electronics, 2015, 30, 6349-6355.	5.4	96
93	Defining the mutual coupling of capacitive power transfer for wireless power transfer. Electronics Letters, 2015, 51, 1806-1807.	0.5	80
94	Adjusting the frequency of an autonomous push pull converter for wireless power transfer by varying the equivalent resonant capacitance through balanced DC voltage control. , 2015, , .		0
95	Scalability Analysis of SIMO Non-Radiative Resonant Wireless Power Transfer Systems Based on Circuit Models. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62, 2574-2583.	3.5	25
96	Improved Coupling Design of Contactless Slipring for Rotary Applications. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3, 288-295.	3.7	13
97	Multiphase Inductive Power Transfer Box Based on a Rotating Magnetic Field. IEEE Transactions on Industrial Electronics, 2015, 62, 795-802.	5.2	26
98	A Contactless Slipring System Based on Axially Traveling Magnetic Field. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3, 280-287.	3.7	9
99	Analysis of Flux Leakage of a 3-D Inductive Power Transfer System. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3, 205-214.	3.7	8
100	Comparison of two high frequency converters for capacitive power transfer. , 2014, , .		37
101	Through-Hole Contactless Slipring System Based on Rotating Magnetic Field for Rotary Applications. IEEE Transactions on Industry Applications, 2014, 50, 3644-3655.	3.3	30
102	A resonant compensation method for improving the performance of capacitively coupled power transfer system. , 2014, , .		22
103	Indoor WiFi energy harvester with multiple antenna for low-power wireless applications. , 2014, , .		15
104	Basic design principle of current-fed energy injection converters. , 2014, , .		1
105	Wireless electric power transfer based on Acoustic Energy through conductive media. , 2014, , .		16
106	Orthogonal experimental design of polydimethylsiloxane curing for the design of low-frequency vibrational energy harvester. Journal of Intelligent Material Systems and Structures, 2014, 25, 2228-2234.	1.4	7
107	Evolutionary multi-objective optimization of H <inf>∞</inf> controller for inductive power transfer system. , 2014, , .		0
108	A Double Stator Through-hole Type Contactless Slipring for Rotary Wireless Power Transfer Applications. IEEE Transactions on Energy Conversion, 2014, 29, 426-434.	3.7	45

#	Article	IF	CITATIONS
109	Improved autonomous currentâ€fed push–pull resonant inverter. IET Power Electronics, 2014, 7, 2103-2110.	1.5	19
110	Maintaining middle zero voltage switching operation of parallel–parallel tuned wireless power transfer system under bifurcation. IET Power Electronics, 2014, 7, 78-84.	1.5	27
111	A current-fed energy injection power converter for wireless power transfer applications. , 2013, , .		1
112	Autonomous synchronous rectifier for heart pump applications. , 2013, , .		2
113	Wireless charging pad based on travelling magnetic field for portable consumer electronics. , 2013, , .		19
114	A Capacitively Coupled Contactless Matrix Charging Platform With Soft Switched Transformer Control. IEEE Transactions on Industrial Electronics, 2013, 60, 249-260.	5.2	105
115	Shifting stable operating points of bifurcated IPT systems by time delay perturbation. Electronics Letters, 2013, 49, 615-617.	0.5	4
116	Wirelessly powered microfluidic sensor and actuator systems. , 2013, , .		1
117	An overview of capacitively coupled power transfer — A new contactless power transfer solution. , 2013, , .		33
118	Contactless Slipring System based on rotating magnetic field principle for rotary applications. , 2013, ,		8
119	Design methodology for inductive power transfer systems targeting high power implantable devices. , 2013, , .		8
120	Pulse density modulated control patterns for inductively powered implantable devices based on energy injection control. IET Power Electronics, 2013, 6, 1051-1057.	1.5	28
121	Fuzzy logic-based directional full-range tuning control of wireless power pickups. IET Power Electronics, 2012, 5, 773-781.	1.5	24
122	A Direct AC–AC Converter for Inductive Power-Transfer Systems. IEEE Transactions on Power Electronics, 2012, 27, 661-668.	5.4	145
123	Comparative Study of CCPT Systems With Two Different Inductor Tuning Positions. IEEE Transactions on Power Electronics, 2012, 27, 294-306.	5.4	66
124	A new rectifier with combined power flow control capability for a series-tuned inductive-power-transfer receiver. , 2012, , .		3
125	Collective Robot Navigation Using Diffusion Limited Aggregation. Lecture Notes in Computer Science, 2012, , 266-276.	1.0	7
126	A contactless slipring system by means of axially travelling magnetic field. , 2012, , .		6

8

#	Article	IF	CITATIONS
127	Power Flow Control Based Solely on Slow Feedback Loop for Heart Pump Applications. IEEE Transactions on Biomedical Circuits and Systems, 2012, 6, 279-286.	2.7	17
128	Modelling and Parameters Identification of Through-Hole Type Wind Turbine Contactless Sliprings. Engineering, 2012, 04, 272-283.	0.4	17
129	Implicit adaptive controller for wireless power pickups. , 2011, , .		6
130	Study on robust controller design for inductively coupled power transfer system. , 2011, , .		2
131	Effect of series tuning inductor position on power transfer capability of CCPT system. Electronics Letters, 2011, 47, 136.	0.5	4
132	Investigating a H <inf>∞</inf> control method considering frequency uncertainty for CLC type Inductively Coupled Power Transfer system. , 2011, , .		9
133	A novel detached magnetic coupling structure for contactless power transfer. , 2011, , .		17
134	A contactless charging platform for swarm robots. , 2011, , .		9
135	A novel MPPT algorithm for load protection based on output sensing control. , 2011, , .		18
136	Multiple soft-switching operating points-based power flow control of contactless power transfer systems. IET Power Electronics, 2011, 4, 725.	1.5	13
137	Modelling and analysis of a capacitively coupled contactless power transfer system. IET Power Electronics, 2011, 4, 808.	1.5	109
138	Minimizing Power Loss in Air-Cored Coils for TET Heart Pump Systems. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2011, 1, 412-419.	2.7	17
139	Frequency bifurcation phenomenon study of a soft switched push-pull contactless power transfer system. , 2011, , .		12
140	Efficient Power-Transfer Capability Analysis of the TET System Using the Equivalent Small Parameter Method. IEEE Transactions on Biomedical Circuits and Systems, 2011, 5, 272-282.	2.7	27
141	Integration of supercapacitors into wirelessly charged biomedical sensors. , 2011, , .		18
142	A contactless power transfer system with capacitively coupled matrix pad. , 2011, , .		20
143	Primary Current Generation for a Contactless Power Transfer System Using Free Oscillation and Energy Injection Control. Journal of Power Electronics, 2011, 11, 256-263.	0.9	12
144	Development of a push-pull current doubler synchronous rectifier for powering heart pumps. , 2010, ,		3

9

2

#	Article	IF	CITATIONS
145	A Novel Low Temperature Transcutaneous Energy Transfer System Suitable for High Power Implantable Medical Devices: Performance and Validation in Sheep. Artificial Organs, 2010, 34, E160-7.	1.0	27
146	A generalized coupling model for Capacitive Power Transfer systems. , 2010, , .		57
147	Linearly tuned wireless power pick-up. , 2010, , .		4
148	2-D alignment analysis of capacitively coupled contactless power transfer systems. , 2010, , .		25
149	Parallel tuned contactless power pickup using saturable core reactor. , 2010, , .		12
150	Harmonic analysis of voltage-fed full-bridge converter for TET application. , 2010, , .		14
151	Low-Cost Autonomous 3-D Monitoring Systems for Hydraulic Engineering Environments and Applications With Limited Accuracy Requirements. IEEE Sensors Journal, 2010, 10, 331-339.	2.4	3
152	Nonlinear modeling and analysis of a practical controllable rectifier. , 2009, , .		1
153	Determining optimal tuning capacitor values of TET system for achieving maximum power transfer. Electronics Letters, 2009, 45, 448.	0.5	13
154	Modeling a contactless power supply using GSSA method. , 2009, , .		41
155	Coupling study of a rotary Capacitive Power Transfer system. , 2009, , .		67
156	Experimental Study of a TET System for Implantable Biomedical Devices. IEEE Transactions on Biomedical Circuits and Systems, 2009, 3, 370-378.	2.7	57
157	A Wireless Power Pickup Based on Directional Tuning Control of Magnetic Amplifier. IEEE Transactions on Industrial Electronics, 2009, 56, 2771-2781.	5.2	105
158	Steady state analysis of a capacitively coupled contactless power transfer system. , 2009, , .		30
159	Determining Multiple Steady-State ZCS Operating Points of a Switch-Mode Contactless Power Transfer System. IEEE Transactions on Power Electronics, 2009, 24, 416-425.	5.4	105
160	A Frequency Control Method for Regulating Wireless Power to Implantable Devices. IEEE Transactions on Biomedical Circuits and Systems, 2008, 2, 22-29.	2.7	484
161	A Novel Contactless Battery Charging System for Soccer Playing Robot. , 2008, , .		116

Modelling and Control of an Inverter for VSC-HVDC Transmission System with Passive Load. , 2008, , .

#	Article	IF	CITATIONS
163	Powering Implantable Telemetry Devices from Localized Magnetic Fields. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 2331-5.	0.5	22
164	Novel technology for the provision of power to implantable physiological devices. Journal of Applied Physiology, 2007, 102, 1658-1663.	1.2	35
165	Determining the variable inductance range for an LCL wireless power pick-up. , 2007, , .		12
166	Switching Frequency Analysis of Dynamically Detuned ICPT Power Pick-ups. , 2006, , .		25
167	A new contactiess power pick-up with continuous variable inductor control using magnetic amplifier. , 2006, , .		21
168	Development of a Direct AC-AC Converter Based on a DSPACE Platform. , 2006, , .		9
169	Improved Power Flow Control for Contactless Moving Sensor Applications. IEEE Power Electronics Letters, 2004, 2, 135-138.	1.1	90
170	A new high frequency current generation method for inductive power transfer applications. , 0, , .		18