Urs von Gunten

List of Publications by Citations

Source: https://exaly.com/author-pdf/886607/urs-von-gunten-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

89 31,597 257 174 h-index g-index citations papers 35,967 7.85 263 10.3 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
257	The challenge of micropollutants in aquatic systems. <i>Science</i> , 2006 , 313, 1072-7	33.3	2376
256	Ozonation of drinking water: part I. Oxidation kinetics and product formation. <i>Water Research</i> , 2003 , 37, 1443-67	12.5	1671
255	Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. <i>Environmental Science & Environmental Science</i>	10.3	1191
254	Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms: a critical review. <i>Water Research</i> , 2008 , 42, 13-51	12.5	1188
253	Global Water Pollution and Human Health. Annual Review of Environment and Resources, 2010, 35, 109-	1 36 .2	973
252	Ozonation of drinking water: part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. <i>Water Research</i> , 2003 , 37, 1469-87	12.5	952
251	Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study. <i>Environmental Science & Environmental Science & Envir</i>	10.3	632
250	Elimination of organic micropollutants in a municipal wastewater treatment plant upgraded with a full-scale post-ozonation followed by sand filtration. <i>Environmental Science & Environmental Science</i>	10.3	622
249	Persulfate-Based Advanced Oxidation: Critical Assessment of Opportunities and Roadblocks. <i>Environmental Science & Environmental Science & Environment</i>	10.3	605
248	Oxidative transformation of micropollutants during municipal wastewater treatment: comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate VI, and ozone) and non-selective oxidants (hydroxyl radical). <i>Water Research</i> , 2010 , 44, 555-66	12.5	519
247	Hydroxyl Radical/Ozone Ratios During Ozonation Processes. I. The Rct Concept. <i>Ozone: Science and Engineering</i> , 1999 , 21, 239-260	2.4	498
246	Bromate Formation during Ozonization of Bromide-Containing Waters: Interaction of Ozone and Hydroxyl Radical Reactions. <i>Environmental Science & Environmental Science & Envir</i>	10.3	450
245	Oxidation of antibacterial molecules by aqueous ozone: moiety-specific reaction kinetics and application to ozone-based wastewater treatment. <i>Environmental Science & Environmental &</i>	10.3	359
244	Comparison of the efficiency of *OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2. <i>Water Research</i> , 2006 , 40, 3695-704	12.5	350
243	Chlorination of natural organic matter: kinetics of chlorination and of THM formation. <i>Water Research</i> , 2002 , 36, 65-74	12.5	343
242	Photosensitizer method to determine rate constants for the reaction of carbonate radical with organic compounds. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	333
241	Effect of dissolved organic matter on the transformation of contaminants induced by excited triplet states and the hydroxyl radical. <i>Environmental Science & Environmental Sc</i>	10.3	318

(2012-2014)

240	Oxidative treatment of bromide-containing waters: formation of bromine and its reactions with inorganic and organic compoundsa critical review. <i>Water Research</i> , 2014 , 48, 15-42	12.5	304
239	Chlorination of phenols: kinetics and formation of chloroform. <i>Environmental Science & Emp; Technology</i> , 2002 , 36, 884-90	10.3	291
238	Formation of Iodo-Trihalomethanes during Disinfection and Oxidation of Iodide-Containing Waters. <i>Environmental Science & Environmental Science & Envi</i>	10.3	289
237	Phototransformation of selected pharmaceuticals during UV treatment of drinking water. <i>Water Research</i> , 2008 , 42, 121-8	12.5	288
236	Degradation Kinetics of Atrazine and Its Degradation Products with Ozone and OH Radicals: A Predictive Tool for Drinking Water Treatment. <i>Environmental Science & Environmental Science & Environment</i>	19 .3	284
235	Prediction of micropollutant elimination during ozonation of municipal wastewater effluents: use of kinetic and water specific information. <i>Environmental Science & Environmental Science & Environme</i>	10.3	278
234	Solar oxidation and removal of arsenic at circumneutral pH in iron containing waters. <i>Environmental Science & Environmental &</i>	10.3	274
233	Oxidation of Iodide and Hypoiodous Acid in the Disinfection of Natural Waters. <i>Environmental Science & Environmental </i>	10.3	274
232	Oxidation Processes in Water Treatment: Are We on Track?. <i>Environmental Science & Environmental Scien</i>	10.3	262
231	Evaluation of a full-scale wastewater treatment plant upgraded with ozonation and biological post-treatments: Abatement of micropollutants, formation of transformation products and oxidation by-products. <i>Water Research</i> , 2018 , 129, 486-498	12.5	258
230	Ferrate (Fe(VI)) application for Municipal wastewater treatment: a novel process for simultaneous micropollutant oxidation and phosphate removal. <i>Environmental Science & Environmental Science & Env</i>	10.3	254
229	Advanced Oxidation of Bromide-Containing Waters: Bromate Formation Mechanisms. <i>Environmental Science & Environmental Science </i>	10.3	253
228	Chemistry. The chlorine dilemma. <i>Science</i> , 2011 , 331, 42-3	33.3	251
227	Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O3/H2O2 and UV/H2O2. <i>Water Research</i> , 2011 , 45, 3811-22	12.5	244
226	Elimination of micropollutants during post-treatment of hospital wastewater with powdered activated carbon, ozone, and UV. <i>Environmental Science & Environmental Science & En</i>	10.3	241
225	Oxidation of pharmaceuticals during water treatment with chlorine dioxide. <i>Water Research</i> , 2005 , 39, 3607-17	12.5	235
224	Efficiency of activated carbon to transform ozone into *OH radicals: influence of operational parameters. <i>Water Research</i> , 2005 , 39, 3189-98	12.5	233
223	Quantitative structure-activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment. <i>Water Research</i> , 2012 , 46, 6177-95	12.5	228

222	Kinetics of the oxidation of phenols and phenolic endocrine disruptors during water treatment with ferrate (Fe(VI)). <i>Environmental Science & Echnology</i> , 2005 , 39, 8978-84	10.3	226
221	Bromate minimization during ozonation: mechanistic considerations. <i>Environmental Science & Environmental Science & Technology</i> , 2001 , 35, 2525-31	10.3	222
220	Kinetic assessment and modeling of an ozonation step for full-scale municipal wastewater treatment: micropollutant oxidation, by-product formation and disinfection. <i>Water Research</i> , 2011 , 45, 605-17	12.5	221
219	Hydroxyl Radical/Ozone Ratios During Ozonation Processes. II. The Effect of Temperature, pH, Alkalinity, and DOM Properties. <i>Ozone: Science and Engineering</i> , 2000 , 22, 123-150	2.4	219
218	Ozonation of carbamazepine in drinking water: identification and kinetic study of major oxidation products. <i>Environmental Science & Environmental Sci</i>	10.3	216
217	Ozonation of reverse osmosis concentrate: kinetics and efficiency of beta blocker oxidation. <i>Water Research</i> , 2008 , 42, 3003-12	12.5	215
216	Removal of estrogenic activity and formation of oxidation products during ozonation of 17alpha-ethinylestradiol. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	213
215	Interactions of fluoroquinolone antibacterial agents with aqueous chlorine: reaction kinetics, mechanisms, and transformation pathways. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	212
214	Oxidation of antibacterial compounds by ozone and hydroxyl radical: elimination of biological activity during aqueous ozonation processes. <i>Environmental Science & Environmental Science & Environmen</i>	d4·3	208
213	Oxidation of N-nitrosodimethylamine (NDMA) precursors with ozone and chlorine dioxide: kinetics and effect on NDMA formation potential. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	193
212	Oxidative degradation of N-nitrosodimethylamine by conventional ozonation and the advanced oxidation process ozone/hydrogen peroxide. <i>Water Research</i> , 2007 , 41, 581-90	12.5	187
211	Oxidative elimination of cyanotoxins: comparison of ozone, chlorine, chlorine dioxide and permanganate. <i>Water Research</i> , 2007 , 41, 3381-93	12.5	184
210	Chemical oxidation of dissolved organic matter by chlorine dioxide, chlorine, and ozone: effects on its optical and antioxidant properties. <i>Environmental Science & Environmental Science & Environme</i>	10.3	179
209	Reaction of bromine and chlorine with phenolic compounds and natural organic matter extractsElectrophilic aromatic substitution and oxidation. <i>Water Research</i> , 2015 , 85, 476-86	12.5	173
208	Mechanistic and kinetic evaluation of organic disinfection by-product and assimilable organic carbon (AOC) formation during the ozonation of drinking water. <i>Water Research</i> , 2006 , 40, 2275-86	12.5	171
207	Measurement of the initial phase of ozone decomposition in water and wastewater by means of a continuous quench-flow system: application to disinfection and pharmaceutical oxidation. <i>Water Research</i> , 2006 , 40, 1884-94	12.5	167
206	Reaction of ferrate(VI) with ABTS and self-decay of ferrate(VI): kinetics and mechanisms. <i>Environmental Science & Environmental Science & Environment</i>	10.3	163
205	Chemistry of Ozone in Water and Wastewater Treatment: From Basic Principles to Applications 2012 ,		162

(2010-2014)

204	Prediction of micropollutant elimination during ozonation of a hospital wastewater effluent. <i>Water Research</i> , 2014 , 64, 134-148	12.5	158
203	Characterization of natural organic matter adsorption in granular activated carbon adsorbers. Water Research, 2011 , 45, 3951-9	12.5	158
202	Ozonation and Advanced Oxidation of Wastewater: Effect of O3 Dose, pH, DOM and HOEscavengers on Ozone Decomposition and HOEseneration. <i>Ozone: Science and Engineering</i> , 2006 , 28, 247-259	2.4	155
201	Spectrophotometric determination of ferrate (Fe(VI)) in water by ABTS. Water Research, 2005, 39, 1946-	· 53 .5	152
200	Development of surrogate correlation models to predict trace organic contaminant oxidation and microbial inactivation during ozonation. <i>Water Research</i> , 2012 , 46, 6257-72	12.5	147
199	Determination of Iodide and Iodate by Ion Chromatography with Postcolumn Reaction and UV/Visible Detection. <i>Analytical Chemistry</i> , 1999 , 71, 34-8	7.8	144
198	Phenols and amine induced HO* generation during the initial phase of natural water ozonation. <i>Environmental Science & Environmental Science & Environ</i>	10.3	142
197	Methods for the photometric determination of reactive bromine and chlorine species with ABTS. <i>Water Research</i> , 2000 , 34, 4343-4350	12.5	142
196	Evaluation of the persistence of transformation products from ozonation of trace organic compounds - a critical review. <i>Water Research</i> , 2015 , 68, 150-70	12.5	133
195	Kinetics of membrane damage to high (HNA) and low (LNA) nucleic acid bacterial clusters in drinking water by ozone, chlorine, chlorine dioxide, monochloramine, ferrate(VI), and permanganate. <i>Water Research</i> , 2011 , 45, 1490-500	12.5	133
194	Oxidation kinetics of selected taste and odor compounds during ozonation of drinking water. <i>Environmental Science & Environmental Science & Environme</i>	10.3	132
193	Selective oxidation of key functional groups in cyanotoxins during drinking water ozonation. <i>Environmental Science & Environmental Science & Environm</i>	10.3	131
192	Kinetics and mechanisms of formation of bromophenols during drinking water chlorination: assessment of taste and odor development. <i>Water Research</i> , 2005 , 39, 2979-93	12.5	131
191	MTBE oxidation by conventional ozonation and the combination ozone/hydrogen peroxide: efficiency of the processes and bromate formation. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	131
190	Trade-offs in disinfection byproduct formation associated with precursor preoxidation for control of N-nitrosodimethylamine formation. <i>Environmental Science & Environmental & Enviro</i>	10.3	130
189	Kinetics and mechanistic aspects of As(III) oxidation by aqueous chlorine, chloramines, and ozone: relevance to drinking water treatment. <i>Environmental Science & Environmental Science & Environment</i>	10.3	127
188	Inactivation of Antibiotic Resistant Bacteria and Resistance Genes by Ozone: From Laboratory Experiments to Full-Scale Wastewater Treatment. <i>Environmental Science & Environmental Science & Environm</i>	10.3	123
187	Kinetics and mechanisms of N-nitrosodimethylamine formation upon ozonation of N,N-dimethylsulfamide-containing waters: bromide catalysis. <i>Environmental Science & Environmental Science & Environment</i>	10.3	123

186	Efficient removal of estrogenic activity during oxidative treatment of waters containing steroid estrogens. <i>Environmental Science & Environmental Sci</i>	10.3	119
185	Enhanced bromate control during ozonation: the chlorine-ammonia process. <i>Environmental Science & Environmental & Environmenta</i>	10.3	112
184	Kinetics of triclosan oxidation by aqueous ozone and consequent loss of antibacterial activity: relevance to municipal wastewater ozonation. <i>Water Research</i> , 2007 , 41, 2481-90	12.5	111
183	Kinetic and mechanistic investigations of the oxidation of tramadol by ferrate and ozone. <i>Environmental Science & Environmental Science & Environment</i>	10.3	109
182	Adsorption as a cause for iron isotope fractionation in reduced groundwater. <i>Geochimica Et Cosmochimica Acta</i> , 2005 , 69, 4175-4185	5.5	105
181	Implications of sequential use of UV and ozone for drinking water quality. <i>Water Research</i> , 2006 , 40, 1864-76	12.5	105
180	Characterization of Oxidation processes: ozonation and the AOP O3/H2O2. <i>Journal - American Water Works Association</i> , 2001 , 93, 90-100	0.5	105
179	Biogeochemical changes in groundwater-infiltration systems: Column studies. <i>Geochimica Et Cosmochimica Acta</i> , 1993 , 57, 3895-3906	5.5	105
178	Advances in predicting organic contaminant abatement during ozonation of municipal wastewater effluent: reaction kinetics, transformation products, and changes of biological effects. <i>Environmental Science: Water Research and Technology</i> , 2016 , 2, 421-442	4.2	103
177	Fingerprinting the reactive toxicity pathways of 50 drinking water disinfection by-products. <i>Water Research</i> , 2016 , 91, 19-30	12.5	102
176	Organic Contaminant Abatement in Reclaimed Water by UV/H2O2 and a Combined Process Consisting of O3/H2O2 Followed by UV/H2O2: Prediction of Abatement Efficiency, Energy Consumption, and Byproduct Formation. <i>Environmental Science & Environmental </i>	10.3	102
175	Kinetics of the reaction between hydrogen peroxide and hypobromous acid: Implication on water treatment and natural systems. <i>Water Research</i> , 1997 , 31, 900-906	12.5	101
174	Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O/HO: Kinetics of micropollutant abatement, transformation product and bromate formation in a surface water. <i>Water Research</i> , 2017 , 122, 234-245	12.5	100
173	Mechanistic Study on the Formation of Cl-/Br-/I-Trihalomethanes during Chlorination/Chloramination Combined with a Theoretical Cytotoxicity Evaluation. <i>Environmental Science & Environmental Science</i>	10.3	100
172	Iodate and iodo-trihalomethane formation during chlorination of iodide-containing waters: role of bromide. <i>Environmental Science & Environmental Scie</i>	10.3	100
171	Formation of assimilable organic carbon during oxidation of natural waters with ozone, chlorine dioxide, chlorine, permanganate, and ferrate. <i>Water Research</i> , 2011 , 45, 2002-10	12.5	96
170	Sunlight-induced transformation of sulfadiazine and sulfamethoxazole in surface waters and wastewater effluents. <i>Water Research</i> , 2014 , 57, 183-92	12.5	94
169	Emerging risks from ballast water treatment: the run-up to the International Ballast Water Management Convention. <i>Chemosphere</i> , 2014 , 112, 256-66	8.4	93

168	How do you like your tap water?. Science, 2016, 351, 912-4	33.3	88
167	Bromide Sources and Loads in Swiss Surface Waters and Their Relevance for Bromate Formation during Wastewater Ozonation. <i>Environmental Science & Environmental Science & Envi</i>	10.3	88
166	Differences in the chlorine reactivity of four microcystin analogues. Water Research, 2006, 40, 1200-9	12.5	86
165	Influence of Carbonate on the Ozone/Hydrogen Peroxide Based Advanced Oxidation Process for Drinking Water Treatment. <i>Ozone: Science and Engineering</i> , 2000 , 22, 305-328	2.4	86
164	Formation of assimilable organic carbon (AOC) and specific natural organic matter (NOM) fractions during ozonation of phytoplankton. <i>Water Research</i> , 2007 , 41, 1447-54	12.5	85
163	Transformation of beta-lactam antibacterial agents during aqueous ozonation: reaction pathways and quantitative bioassay of biologically-active oxidation products. <i>Environmental Science & amp; Technology</i> , 2010 , 44, 5940-8	10.3	84
162	Degradation rates of benzotriazoles and benzothiazoles under UV-C irradiation and the advanced oxidation process UV/H2O2. <i>Water Research</i> , 2015 , 74, 143-54	12.5	82
161	Mechanisms of Phenol Ozonation Linetics of Formation of Primary and Secondary Reaction Products. Ozone: Science and Engineering, 2009, 31, 201-215	2.4	82
160	Oxidation of suspected N-nitrosodimethylamine (NDMA) precursors by ferrate (VI): kinetics and effect on the NDMA formation potential of natural waters. <i>Water Research</i> , 2008 , 42, 433-41	12.5	82
159	Ozonation of iodide-containing waters: selective oxidation of iodide to iodate with simultaneous minimization of bromate and I-THMs. <i>Water Research</i> , 2013 , 47, 1953-60	12.5	81
158	Occurrence of dissolved and particle-bound taste and odor compounds in Swiss lake waters. <i>Water Research</i> , 2009 , 43, 2191-200	12.5	81
157	Formation and reactivity of inorganic and organic chloramines and bromamines during oxidative water treatment. <i>Water Research</i> , 2017 , 110, 91-101	12.5	78
156	Enhanced N-nitrosamine formation in pool water by UV irradiation of chlorinated secondary amines in the presence of monochloramine. <i>Water Research</i> , 2013 , 47, 79-90	12.5	77
155	Simultaneous determination of bromide, bromate and nitrite in low [] l[] levels by ion chromatography without sample pretreatment. <i>Water Research</i> , 1999 , 33, 3239-3244	12.5	75
154	Options and limitations for bromate control during ozonation of wastewater. <i>Water Research</i> , 2017 , 116, 76-85	12.5	72
153	Combination of UV absorbance and electron donating capacity to assess degradation of micropollutants and formation of bromate during ozonation of wastewater effluents. <i>Water Research</i> , 2015 , 81, 388-97	12.5	72
152	Novel test procedure to evaluate the treatability of wastewater with ozone. <i>Water Research</i> , 2015 , 75, 324-35	12.5	72
151	Iron isotope fractionation and atom exchange during sorption of ferrous iron to mineral surfaces. Geochimica Et Cosmochimica Acta, 2009, 73, 1795-1812	5.5	7 ²

150	Oxidation of iodide and iodine on birnessite (delta-MnO2) in the pH range 4-8. <i>Water Research</i> , 2009 , 43, 3417-26	12.5	71
149	Reductive Dissolution of Fe(III) (Hydr)oxides by Cysteine: Kinetics and Mechanism. <i>Journal of Colloid and Interface Science</i> , 1997 , 194, 194-206	9.3	71
148	Formation of iodinated organic compounds by oxidation of iodide-containing waters with manganese dioxide. <i>Environmental Science & Environmental & Environment</i>	10.3	70
147	Bromate formation in advanced oxidation processes. <i>Journal - American Water Works Association</i> , 1996 , 88, 53-65	0.5	7°
146	Permeability of low molecular weight organics through nanofiltration membranes. <i>Water Research</i> , 2007 , 41, 3968-76	12.5	69
145	Comparison of methylisoborneol and geosmin abatement in surface water by conventional ozonation and an electro-peroxone process. <i>Water Research</i> , 2017 , 108, 373-382	12.5	66
144	A Tale of Two Treatments: The Multiple Barrier Approach to Removing Chemical Contaminants During Potable Water Reuse. <i>Accounts of Chemical Research</i> , 2019 , 52, 615-622	24.3	64
143	Formation of N-nitrosamines from chlorination and chloramination of molecular weight fractions of natural organic matter. <i>Water Research</i> , 2013 , 47, 535-46	12.5	63
142	DNA degradation by the mixture of copper and catechol is caused by DNA-copper-hydroperoxo complexes, probably DNA-Cu(I)OOH. <i>Environmental and Molecular Mutagenesis</i> , 2000 , 36, 5-12	3.2	62
141	Hypoiodous acid: kinetics of the buffer-catalyzed disproportionation. <i>Water Research</i> , 2000 , 34, 3197-3	3 203 .5	62
140	Development of Prediction Models for the Reactivity of Organic Compounds with Ozone in Aqueous Solution by Quantum Chemical Calculations: The Role of Delocalized and Localized Molecular Orbitals. <i>Environmental Science & Environmental Science & E</i>	10.3	60
139	Trihalomethane formation by chlorination of ammonium- and bromide-containing groundwater in water supplies of Hanoi, Vietnam. <i>Water Research</i> , 2003 , 37, 3242-52	12.5	60
138	By-products formation during drinking water disinfection: a tool to assess disinfection efficiency?. <i>Water Research</i> , 2001 , 35, 2095-9	12.5	60
137	Photosensitizing and Inhibitory Effects of Ozonated Dissolved Organic Matter on Triplet-Induced Contaminant Transformation. <i>Environmental Science & Environmental Science & E</i>	10.3	59
136	Oxidation of cetirizine, fexofenadine and hydrochlorothiazide during ozonation: Kinetics and formation of transformation products. <i>Water Research</i> , 2016 , 94, 350-362	12.5	59
135	Sulfamethoxazole and isoproturon degradation and detoxification by a laccase-mediator system: Influence of treatment conditions and mechanistic aspects. <i>Biochemical Engineering Journal</i> , 2015 , 103, 47-59	4.2	58
134	Ozonation of Para-Substituted Phenolic Compounds Yields p-Benzoquinones, Other Cyclic III Insaturated Ketones, and Substituted Catechols. <i>Environmental Science & Camp; Technology</i> , 2018 , 52, 4763-4773	10.3	58
133	Enhanced bromate formation during chlorination of bromide-containing waters in the presence of CuO: catalytic disproportionation of hypobromous acid. <i>Environmental Science & amp; Technology</i> , 2012 . 46, 11054-61	10.3	58

132	Inactivation of Bacillus subtilis spores and formation of bromate during ozonation. <i>Water Research</i> , 2001 , 35, 2950-60	12.5	58
131	Non-target screening to trace ozonation transformation products in a wastewater treatment train including different post-treatments. <i>Water Research</i> , 2018 , 142, 267-278	12.5	58
130	Removal of bromide and iodide anions from drinking water by silver-activated carbon aerogels. Journal of Colloid and Interface Science, 2006 , 300, 437-41	9.3	57
129	Ag-doped carbon aerogels for removing halide ions in water treatment. Water Research, 2007, 41, 1031-	7 2.5	55
128	Transformation of 17alpha-ethinylestradiol during water chlorination: effects of bromide on kinetics, products, and transformation pathways. <i>Environmental Science & Environmental Science & Environm</i>	10.3	54
127	Metal-doped carbon aerogels as catalysts during ozonation processes in aqueous solutions. <i>Water Research</i> , 2006 , 40, 3375-84	12.5	52
126	Mechanistic Aspects of the Formation of Adsorbable Organic Bromine during Chlorination of Bromide-containing Synthetic Waters. <i>Environmental Science & Environmental Science </i>	10.3	51
125	Kinetics of Inactivation of Waterborne Enteric Viruses by Ozone. <i>Environmental Science & Environmental Science & Technology</i> , 2018 , 52, 2170-2177	10.3	51
124	Evaluation of functional groups responsible for chloroform formation during water chlorination using compound specific isotope analysis. <i>Environmental Science & Environmental & Environmenta</i>	10.3	51
123	Primary products of the oxygenation of iron(II) at an oxiclinoxic boundary: Nucleation, aggregation, and aging. <i>Journal of Colloid and Interface Science</i> , 1991 , 145, 127-139	9.3	51
122	Reactions of Ferrate(VI) with Iodide and Hypoiodous Acid: Kinetics, Pathways, and Implications for the Fate of Iodine during Water Treatment. <i>Environmental Science & Environmental Science & Environ</i>	10.3 57	51
121	Ozonation of source-separated urine for resource recovery and waste minimization: process modeling, reaction chemistry, and operational considerations. <i>Environmental Science & amp; Technology</i> , 2008 , 42, 9329-37	10.3	50
120	Inactivation efficiency of Escherichia coli and autochthonous bacteria during ozonation of municipal wastewater effluents quantified with flow cytometry and adenosine tri-phosphate analyses. <i>Water Research</i> , 2016 , 101, 617-627	12.5	49
119	Peracetic acid oxidation of saline waters in the absence and presence of H D Esecondary oxidant and disinfection byproduct formation. <i>Environmental Science & Environmental S</i>	10.3	49
118	Formation of disinfection by-products during ballast water treatment with ozone, chlorine, and peracetic acid: influence of water quality parameters. <i>Environmental Science: Water Research and Technology</i> , 2015 , 1, 465-480	4.2	47
117	Kinetics and mechanisms of nitrate and ammonium formation during ozonation of dissolved organic nitrogen. <i>Water Research</i> , 2017 , 108, 451-461	12.5	46
116	Combination of Ozone with Activated Carbon as an Alternative to Conventional Advanced Oxidation Processes. <i>Ozone: Science and Engineering</i> , 2006 , 28, 237-245	2.4	46
115	Formation of N-Nitrosodimethylamine during Chloramination of Secondary and Tertiary Amines: Role of Molecular Oxygen and Radical Intermediates. <i>Environmental Science & Environmental Science & Envir</i>	10.3	

114	Ozone and chlorine reactions with dissolved organic matter - Assessment of oxidant-reactive moieties by optical measurements and the electron donating capacities. <i>Water Research</i> , 2018 , 144, 64-7	7 <mark>5</mark> 2.5	43
113	Oxidation of manganese(II) during chlorination: role of bromide. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	42
112	Sample Enrichment for Bioanalytical Assessment of Disinfected Drinking Water: Concentrating the Polar, the Volatiles, and the Unknowns. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	42
111	Reactions of aliphatic amines with ozone: Kinetics and mechanisms. Water Research, 2019, 157, 514-528	12.5	41
110	Photolysis of inorganic chloramines and efficiency of trichloramine abatement by UV treatment of swimming pool water. <i>Water Research</i> , 2014 , 56, 280-91	12.5	41
109	Molecular mechanism of NDMA formation from N,N-dimethylsulfamide during ozonation: quantum chemical insights into a bromide-catalyzed pathway. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	40
108	Evolution of algal toxicity during (photo)oxidative degradation of diuron. <i>Aquatic Toxicology</i> , 2011 , 101, 466-73	5.1	39
107	Determinants of disinfectant pretreatment efficacy for nitrosamine control in chloraminated drinking water. <i>Water Research</i> , 2015 , 84, 161-70	12.5	38
106	Quantification and characterization of dissolved organic nitrogen in wastewater effluents by electrodialysis treatment followed by size-exclusion chromatography with nitrogen detection. <i>Water Research</i> , 2013 , 47, 5381-91	12.5	37
105	Chlorination of bromide-containing waters: enhanced bromate formation in the presence of synthetic metal oxides and deposits formed in drinking water distribution systems. <i>Water Research</i> , 2013 , 47, 5307-15	12.5	36
104	Probing the Photosensitizing and Inhibitory Effects of Dissolved Organic Matter by Using N,N-dimethyl-4-cyanoaniline (DMABN). <i>Environmental Science & Dissolved Organic Matter by Using N,N-dimethyl-4-cyanoaniline (DMABN)</i> .	,10.3	35
103	Kinetic and Mechanistic Aspects of the Reactions of Iodide and Hypoiodous Acid with Permanganate: Oxidation and Disproportionation. <i>Environmental Science & Environmental Sci</i>	10.3	35
102	Development of mutagenicity during degradation of N-nitrosamines by advanced oxidation processes. <i>Water Research</i> , 2014 , 66, 399-410	12.5	34
101	Analysis of N-nitrosamines and other nitro(so) compounds in water by high-performance liquid chromatography with post-column UV photolysis/Griess reaction. <i>Water Research</i> , 2013 , 47, 4893-903	12.5	34
100	195Pt, 119Sn and 31P NMR studies of alkyl, aryl and acyl trichlorostannate complexes of platinum(II). The crystal structure of trans-[Pt(SnCl3)(COC6H5)(PEt3)2]. <i>Journal of Organometallic Chemistry</i> , 1985 , 295, 239-256	2.3	34
99	In Situ Formation of Free Chlorine During ClO Treatment: Implications on the Formation of Disinfection Byproducts. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	34
98	Enhanced transformation of sulfonamide antibiotics by manganese(IV) oxide in the presence of model humic constituents. <i>Water Research</i> , 2019 , 153, 200-207	12.5	33
97	Effect of Ozone Treatment on Nano-Sized Silver Sulfide in Wastewater Effluent. <i>Environmental Science & Emp; Technology</i> , 2015 , 49, 10911-9	10.3	33

96	Removal of the antiviral agent oseltamivir and its biological activity by oxidative processes. <i>Environmental Pollution</i> , 2012 , 161, 30-5	9.3	33	
95	Simultaneous prediction of Cryptosporidium parvum oocyst inactivation and bromate formation during ozonation of synthetic waters. <i>Environmental Science & Environmental Scien</i>	10.3	33	
94	OH radical-initiated oxidation of organic compounds in atmospheric water phases: part 1. Reactions of peroxyl radicals derived from 2-butoxyethanol in water. <i>Atmospheric Environment</i> , 2000 , 34, 4241-42.	5½ 3	33	
93	Sorption and catalytic oxidation of Fe(II) at the surface of calcite. <i>Geochimica Et Cosmochimica Acta</i> , 2009 , 73, 1826-1840	5.5	32	
92	A stochastic model of an ozonation reactor. Water Research, 2003, 37, 1667-77	12.5	32	
91	Transformation of Contaminant Candidate List (CCL3) compounds during ozonation and advanced oxidation processes in drinking water: Assessment of biological effects. <i>Water Research</i> , 2016 , 93, 110-	1 <mark>20</mark> .5	31	
90	NOM degradation during river infiltration: effects of the climate variables temperature and discharge. <i>Water Research</i> , 2013 , 47, 6585-95	12.5	31	
89	The impact of selected water quality parameters on the inactivation of Bacillus subtilis spores by monochloramine and ozone. <i>Water Research</i> , 2006 , 40, 373-82	12.5	30	
88	Modeling Cryptosporidium parvum oocyst inactivation and bromate in a flow-through ozone contactor treating natural water. <i>Water Research</i> , 2007 , 41, 467-75	12.5	29	
87	Two analytical approaches quantifying the electron donating capacities of dissolved organic matter to monitor its oxidation during chlorination and ozonation. <i>Water Research</i> , 2018 , 144, 677-689	12.5	29	
86	Reactions of hypoiodous acid with model compounds and the formation of iodoform in absence/presence of permanganate. <i>Water Research</i> , 2017 , 119, 126-135	12.5	28	
85	Abatement of Polychoro-1,3-butadienes in Aqueous Solution by Ozone, UV Photolysis, and Advanced Oxidation Processes (O/HO and UV/HO). <i>Environmental Science & Enp; Technology</i> , 2017 , 51, 497-505	10.3	28	
84	Process Control For Ozonation Systems: A Novel Real-Time Approach. <i>Ozone: Science and Engineering</i> , 2013 , 35, 168-185	2.4	28	
83	OH radical-initiated oxidation of organic compounds in atmospheric water phases: part 2. Reactions of peroxyl radicals with transition metals. <i>Atmospheric Environment</i> , 2000 , 34, 4253-4264	5.3	28	
82	Differences in Viral Disinfection Mechanisms as Revealed by Quantitative Transfection of Echovirus 11 Genomes. <i>Applied and Environmental Microbiology</i> , 2019 , 85,	4.8	27	
81	Chlorination of Phenols Revisited: Unexpected Formation of III Insaturated C-Dicarbonyl Ring Cleavage Products. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	27	
80	Effects of Ozone on the Photochemical and Photophysical Properties of Dissolved Organic Matter. <i>Environmental Science & Environmental Science & Envir</i>	10.3	26	
79	Micropollutant Oxidation Studied by Quantum Chemical Computations: Methodology and Applications to Thermodynamics, Kinetics, and Reaction Mechanisms. <i>Accounts of Chemical Research</i> 2019, 52, 605-614	24.3	26	

78	UV/HO advanced oxidation for abatement of organophosphorous pesticides and the effects on various toxicity screening assays. <i>Chemosphere</i> , 2017 , 182, 477-482	8.4	25
77	Molecular-Level Transformation of Dissolved Organic Matter during Oxidation by Ozone and Hydroxyl Radical. <i>Environmental Science & Enphasology</i> , 2020 , 54, 10351-10360	10.3	25
76	MEMBRO3X, a Novel Combination of a Membrane Contactor with Advanced Oxidation (O3/H2O2) for Simultaneous Micropollutant Abatement and Bromate Minimization. <i>Environmental Science and Technology Letters</i> , 2017 , 4, 180-185	11	24
75	Ozonation of municipal wastewater effluent containing metal sulfides and metal complexes: Kinetics and mechanisms. <i>Water Research</i> , 2018 , 134, 170-180	12.5	24
74	Nitrate formation during ozonation as a surrogate parameter for abatement of micropollutants and the N-nitrosodimethylamine (NDMA) formation potential. <i>Water Research</i> , 2017 , 122, 246-257	12.5	23
73	A computer-based prediction platform for the reaction of ozone with organic compounds in aqueous solution: kinetics and mechanisms. <i>Environmental Sciences: Processes and Impacts</i> , 2017 , 19, 465-476	4.3	22
72	Quantification of Total N-Nitrosamine Concentrations in Aqueous Samples via UV-Photolysis and Chemiluminescence Detection of Nitric Oxide. <i>Analytical Chemistry</i> , 2017 , 89, 1574-1582	7.8	22
71	Column studies to assess the effects of climate variables on redox processes during riverbank filtration. <i>Water Research</i> , 2014 , 61, 263-75	12.5	22
70	Trihalomethane formation during water disinfection in four water supplies in the Somes river basin in Romania. <i>Environmental Science and Pollution Research</i> , 2009 , 16 Suppl 1, S55-65	5.1	22
69	Formation of brominated trihalomethanes during chlorination or ozonation of natural organic matter extracts and model compounds in saline water. <i>Water Research</i> , 2018 , 143, 492-502	12.5	21
68	Compound-specific carbon, nitrogen, and hydrogen isotope analysis of N-nitrosodimethylamine in aqueous solutions. <i>Analytical Chemistry</i> , 2015 , 87, 2916-24	7.8	21
67	Global sensitivity analysis for model-based prediction of oxidative micropollutant transformation during drinking water treatment. <i>Water Research</i> , 2009 , 43, 997-1004	12.5	21
66	Mixture effects of drinking water disinfection by-products: implications for risk assessment. <i>Environmental Science: Water Research and Technology</i> , 2020 , 6, 2341-2351	4.2	20
65	Specific and total N-nitrosamines formation potentials of nitrogenous micropollutants during chloramination. <i>Water Research</i> , 2018 , 135, 311-321	12.5	20
64	Chlorination of iodide-containing waters in the presence of CuO: formation of periodate. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	20
63	Emerging investigators series: prediction of trace organic contaminant abatement with UV/H2O2: development and validation of semi-empirical models for municipal wastewater effluents. Environmental Science: Water Research and Technology, 2016, 2, 460-473	4.2	20
62	Uncertainty in prediction of disinfection performance. Water Research, 2007, 41, 2371-8	12.5	18
61	Oxidation of metal-diethylenetriaminepentaacetate (DTPA)complexes during drinking water ozonation. <i>Water Research</i> , 2001 , 35, 1877-86	12.5	18

60	Determination of chlorate at low microgram/l levels by ion-chromatography with postcolumn reaction. <i>Journal of Chromatography A</i> , 1999 , 849, 209-15	4.5	18
59	Taste and odour problems generated in distribution systems: a case study on the formation of 2,4,6-trichloroanisole 2009 , 58, 386-394		17
58	Bromide and iodide removal from waters under dynamic conditions by Ag-doped aerogels. <i>Journal of Colloid and Interface Science</i> , 2007 , 306, 183-6	9.3	17
57	Proxies to monitor the inactivation of viruses by ozone in surface water and wastewater effluent. Water Research, 2019 , 166, 115088	12.5	16
56	Generation of hydroxyl radical during chlorination of hydroxyphenols and natural organic matter extracts. <i>Water Research</i> , 2020 , 177, 115691	12.5	16
55	Comparison of a novel extraction-based colorimetric (ABTS) method with membrane introduction mass spectrometry (MIMS): trichloramine dynamics in pool water. <i>Water Research</i> , 2014 , 58, 258-68	12.5	15
54	Bromate in Drinking Water A problem in Switzerland?. <i>Ozone: Science and Engineering</i> , 2003 , 25, 159-160	52.4	15
53	Quantification of the electron donating capacity and UV absorbance of dissolved organic matter during ozonation of secondary wastewater effluent by an assay and an automated analyzer. <i>Water Research</i> , 2020 , 185, 116235	12.5	15
52	Trichloramine reactions with nitrogenous and carbonaceous compounds: kinetics, products and chloroform formation. <i>Water Research</i> , 2015 , 71, 318-29	12.5	14
51	Steady-state modelling of biogeochemical processes in columns with aquifer material 1. Speciation and mass balances. <i>Chemical Geology</i> , 1996 , 133, 15-28	4.2	14
50	Efficiency of pre-oxidation of natural organic matter for the mitigation of disinfection byproducts: Electron donating capacity and UV absorbance as surrogate parameters. <i>Water Research</i> , 2020 , 187, 116	5418	14
49	Halide removal from aqueous solution by novel silver-polymeric materials. <i>Science of the Total Environment</i> , 2016 , 573, 1125-1131	10.2	14
48	Point-of-use water filters can effectively remove disinfection by-products and toxicity from chlorinated and chloraminated tap water. <i>Environmental Science: Water Research and Technology</i> , 2016 , 2, 875-883	4.2	13
47	Behavior of NDMA precursors at 21 full-scale water treatment facilities. <i>Environmental Science:</i> Water Research and Technology, 2018 , 4, 1966-1978	4.2	12
46	Chlorothalonil transformation products in drinking water resources: Widespread and challenging to abate. <i>Water Research</i> , 2020 , 183, 116066	12.5	11
45	Adaptation of Pseudomonas aeruginosa to constant sub-inhibitory concentrations of quaternary ammonium compounds. <i>Environmental Science: Water Research and Technology</i> , 2020 , 6, 1139-1152	4.2	11
44	Kinetics of the reaction between hydrogen peroxide and aqueous iodine: Implications for technical and natural aquatic systems. <i>Water Research</i> , 2020 , 179, 115852	12.5	11
43	REMOVAL OF PHARMACEUTICALS AND PERSONAL CARE PRODUCTS: RESULTS OF THE POSEIDON PROJECT. <i>Proceedings of the Water Environment Federation</i> , 2005 , 2005, 227-243		11

42	Formation of transformation products during ozonation of secondary wastewater effluent and their fate in post-treatment: From laboratory- to full-scale. <i>Water Research</i> , 2021 , 200, 117200	12.5	11
41	Kinetic and mechanistic aspects of selenite oxidation by chlorine, bromine, monochloramine, ozone, permanganate, and hydrogen peroxide. <i>Water Research</i> , 2019 , 164, 114876	12.5	10
40	Laser flash photolysis study of the photoinduced oxidation of 4-(dimethylamino)benzonitrile (DMABN). <i>Photochemical and Photobiological Sciences</i> , 2019 , 18, 534-545	4.2	9
39	Comparison of the impact of ozone, chlorine dioxide, ferrate and permanganate pre-oxidation on organic disinfection byproduct formation during post-chlorination. <i>Environmental Science: Water Research and Technology</i> , 2020 , 6, 2382-2395	4.2	9
38	Ozonation of organic compounds in water and wastewater: A critical review <i>Water Research</i> , 2022 , 213, 118053	12.5	9
37	Quenching of an Aniline Radical Cation by Dissolved Organic Matter and Phenols: A Laser Flash Photolysis Study. <i>Environmental Science & Enp.; Technology</i> , 2020 , 54, 15057-15065	10.3	9
36	Optical properties and photochemical production of hydroxyl radical and singlet oxygen after ozonation of dissolved organic matter. <i>Environmental Science: Water Research and Technology</i> , 2021 , 7, 346-356	4.2	9
35	Enhanced Treatment of Municipal Wastewater Effluents by Fe-TAML/HO: Efficiency of Micropollutant Abatement. <i>Environmental Science & Environmental Sci</i>	10.3	9
34	Enhanced chlorine dioxide decay in the presence of metal oxides: relevance to drinking water distribution systems. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	8
33	Reactions of pyrrole, imidazole, and pyrazole with ozone: kinetics and mechanisms. <i>Environmental Science: Water Research and Technology</i> , 2020 , 6, 976-992	4.2	8
32	Impact of Combined Chlorination and Chloramination Conditions on N-Nitrosodimethylamine Formation. <i>Journal - American Water Works Association</i> , 2018 , 110, 11-24	0.5	8
31	Carbon, Hydrogen, and Nitrogen Isotope Fractionation Trends in N-Nitrosodimethylamine Reflect the Formation Pathway during Chloramination of Tertiary Amines. <i>Environmental Science & Environmental Science & Technology</i> , 2017 , 51, 13170-13179	10.3	7
30	Surface water treatment by UV/H2O2 with subsequent soil aquifer treatment: impact on micropollutants, dissolved organic matter and biological activity. <i>Environmental Science: Water Research and Technology</i> , 2019 , 5, 1709-1722	4.2	7
29	Hypobromous Acid as an Unaccounted Sink for Marine Dimethyl Sulfide?. <i>Environmental Science & Environmental Science</i>	10.3	7
28	The Influence of Dissolved Organic Matter Character on Ozone Decomposition Rates and Rct. <i>ACS Symposium Series</i> , 2000 , 248-269	0.4	7
27	Cattle, clean water, and climate change: policy choices for the Brazilian Agricultural Frontier. <i>Environmental Science & Environmental Science & Envi</i>	10.3	6
26	Sources of parameter uncertainty in predicting treatment performance: the case of preozonation in drinking water engineering. <i>Environmental Science & Environmental Science &</i>	10.3	6
25	Steady-state modelling of biogeochemical processes in columns with aquifer material:. <i>Chemical Geology</i> , 2000 , 167, 271-284	4.2	6

24	Oxidation of 51 micropollutants during drinking water ozonation: Formation of transformation products and their fate during biological post-filtration. <i>Water Research</i> , 2021 , 207, 117812	12.5	6
23	Chlorination and bromination of olefins: Kinetic and mechanistic aspects. <i>Water Research</i> , 2020 , 187, 116424	12.5	6
22	Assessment of the breakthrough of micropollutants in full-scale granular activated carbon adsorbers by rapid small-scale column tests and a novel pilot-scale sampling approach. <i>Environmental Science: Water Research and Technology</i> , 2020 , 6, 2742-2751	4.2	6
21	Ozonation as Pre-Treatment Step for the Biological Batch Degradation of Industrial Wastewater Containing 3-Methyl-Pyridine <i>Ozone: Science and Engineering</i> , 2001 , 23, 189-198	2.4	5
20	Permanganate Reduction by Hydrogen Peroxide: Formation of Reactive Manganese Species and Superoxide and Enhanced Micropollutant Abatement. <i>ACS ES&T Engineering</i> ,		5
19	Oxidant-reactive carbonous moieties in dissolved organic matter: Selective quantification by oxidative titration using chlorine dioxide and ozone. <i>Water Research</i> , 2021 , 207, 117790	12.5	4
18	Enhanced transformation of aquatic organic compounds by long-lived photooxidants (LLPO) produced from dissolved organic matter. <i>Water Research</i> , 2021 , 190, 116707	12.5	4
17	Reactions of Insaturated Carbonyls with Free Chlorine, Free Bromine, and Combined Chlorine. <i>Environmental Science & Environmental Science & Environme</i>	10.3	4
16	Formation of N-nitrosamines by micelle-catalysed nitrosation of aliphatic secondary amines. <i>Environmental Sciences: Processes and Impacts</i> , 2018 , 20, 1479-1487	4.3	4
15	Fate of Cr(III) during Ozonation of Secondary Municipal Wastewater Effluent. <i>Ozone: Science and Engineering</i> , 2018 , 40, 441-447	2.4	4
14	Toxic effects of substituted p-benzoquinones and hydroquinones in in vitro bioassays are altered by reactions with the cell assay medium. <i>Water Research</i> , 2021 , 202, 117415	12.5	4
13	Reply to Comment on E ffect of Dissolved Organic Matter on the Transformation of Contaminants Induced by Excited Triplet States and the Hydroxyl Radical <i>Environmental Science & Eamp; Technology</i> , 2011 , 45, 7947-7948	10.3	3
12	Micropollutants as internal probe compounds to assess UV fluence and hydroxyl radical exposure in UV/HO treatment. <i>Water Research</i> , 2021 , 195, 116940	12.5	3
11	Ozone disinfection of waterborne pathogens and their surrogates: A critical review <i>Water Research</i> , 2022 , 214, 118206	12.5	3
10	Photochemical oxidation of phenols and anilines mediated by phenoxyl radicals in aqueous solution <i>Water Research</i> , 2022 , 213, 118095	12.5	2
9	Reactions of amines with ozone and chlorine: Two novel oxidative methods to evaluate the N-DBP formation potential from dissolved organic nitrogen. <i>Water Research</i> , 2021 , 209, 117864	12.5	2
8	Application of UV absorbance and electron-donating capacity as surrogates for micropollutant abatement during full-scale ozonation of secondary-treated wastewater. <i>Water Research</i> , 2021 , 209, 117858	12.5	2
7	lodide sources in the aquatic environment and its fate during oxidative water treatment - A critical review <i>Water Research</i> , 2022 , 217, 118417	12.5	1

6	Inputs of disinfection by-products to the marine environment from various industrial activities: Comparison to natural production <i>Water Research</i> , 2022 , 217, 118383	12.5	1
5	Nanoplastics Removal During Drinking Water Treatment: Laboratory- and Pilot-scale Experiments and Modeling. <i>Journal of Hazardous Materials</i> , 2022 , 129011	12.8	1
4	Reaction of DMS and HOBr as a Sink for Marine DMS and an Inhibitor of Bromoform Formation. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	0
3	Effect of cetyltrimethylammonium chloride on various Escherichia coli strains and their inactivation kinetics by ozone and monochloramine <i>Water Research</i> , 2022 , 216, 118278	12.5	O
2	Kinetic and mechanistic understanding of chlorite oxidation during chlorination: Optimization of ClO2 pre-oxidation for disinfection byproduct control. <i>Water Research</i> , 2022 , 118515	12.5	О
1	An American in Zurich: Jerry Schnoor as an Ambassador for U.S. Environmental Science and Engineering. <i>Environmental Science & Engineering</i> . <i>Environmental Science</i> & <i>Engineering</i> . <i>Environmental Science</i> & <i>Engineering</i> .	10.3	