László Buday

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8865191/publications.pdf

Version: 2024-02-01

		270111	190340
56	6,590 citations	25	53
papers	citations	h-index	g-index
F.C	5.6	E.C.	0720
56	56	56	8728
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Disordered–Ordered Protein Binary Classification by Circular Dichroism Spectroscopy. Frontiers in Molecular Biosciences, 2022, 9, 863141.	1.6	18
2	Solution NMR Structure of the SH3 Domain of Human Caskin1 Validates the Lack of a Typical Peptide Binding Groove and Supports a Role in Lipid Mediator Binding. Cells, 2021, 10, 173.	1.8	3
3	Novel Roles of SH2 and SH3 Domains in Lipid Binding. Cells, 2021, 10, 1191.	1.8	6
4	Cellular Chaperone Function of Intrinsically Disordered Dehydrin ERD14. International Journal of Molecular Sciences, 2021, 22, 6190.	1.8	11
5	Characterization of the Intramolecular Interactions and Regulatory Mechanisms of the Scaffold Protein Tks4. International Journal of Molecular Sciences, 2021, 22, 8103.	1.8	2
6	Interplay of Structural Disorder and Short Binding Elements in the Cellular Chaperone Function of Plant Dehydrin ERD14. Cells, 2020, 9, 1856.	1.8	12
7	Novel regulation of Ras proteins by direct tyrosine phosphorylation and dephosphorylation. Cancer and Metastasis Reviews, 2020, 39, 1067-1073.	2.7	18
8	Advances in Understanding TKS4 and TKS5: Molecular Scaffolds Regulating Cellular Processes from Podosome and Invadopodium Formation to Differentiation and Tissue Homeostasis. International Journal of Molecular Sciences, 2020, 21, 8117.	1.8	15
9	Analysis of Tks4 Knockout Mice Suggests a Role for Tks4 in Adipose Tissue Homeostasis in the Context of Beigeing. Cells, 2019, 8, 831.	1.8	7
10	Absence of the Tks4 Scaffold Protein Induces Epithelial-Mesenchymal Transition-Like Changes in Human Colon Cancer Cells. Cells, 2019, 8, 1343.	1.8	10
11	Structural insights into the tyrosine phosphorylation–mediated inhibition of SH3 domain–ligand interactions. Journal of Biological Chemistry, 2019, 294, 4608-4620.	1.6	12
12	Significance of the Tks4 scaffold protein in bone tissue homeostasis. Scientific Reports, 2019, 9, 5781.	1.6	11
13	Dendritic spine morphology and memory formation depend on postsynaptic Caskin proteins. Scientific Reports, 2019, 9, 16843.	1.6	19
14	Disordered Regions of Mixed Lineage Leukemia 4 (MLL4) Protein Are Capable of RNA Binding. International Journal of Molecular Sciences, 2018, 19, 3478.	1.8	9
15	Enhanced In Vitro Antitumor Activity of GnRH-III-Daunorubicin Bioconjugates Influenced by Sequence Modification. Pharmaceutics, 2018, 10, 223.	2.0	21
16	Synthesis and in vitro biochemical evaluation of oxime bond-linked daunorubicin–GnRH-III conjugates developed for targeted drug delivery. Beilstein Journal of Organic Chemistry, 2018, 14, 756-771.	1.3	19
17	EGF Regulates the Interaction of Tks4 with Src through Its SH2 and SH3 Domains. Biochemistry, 2018, 57, 4186-4196.	1.2	17
18	BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Research, 2018, 46, W315-W322.	6.5	771

#	Article	IF	CITATIONS
19	The SH3 domain of Caskin1 binds to lysophosphatidic acid suggesting a direct role for the lipid in intracellular signaling. Cellular Signalling, 2017, 32, 66-75.	1.7	8
20	Regulation of the Equilibrium between Closed and Open Conformations of Annexin A2 by N-Terminal Phosphorylation and S100A4-Binding. Structure, 2017, 25, 1195-1207.e5.	1.6	42
21	The scaffold protein Tks4 is required for the differentiation of mesenchymal stromal cells (MSCs) into adipogenic and osteogenic lineages. Scientific Reports, 2016, 6, 34280.	1.6	20
22	RAS Activation. , 2016, , 3911-3914.		0
23	Accumulation of the PX domain mutant Frank-ter Haar syndrome protein Tks4 in aggresomes. Cell Communication and Signaling, 2015, 13, 33.	2.7	4
24	T cell specific adaptor protein (TSAd) promotes interaction of Nck with Lck and SLP-76 in T cells. Cell Communication and Signaling, 2015, 13, 31.	2.7	14
25	Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3095-103.	3.3	1,215
26	K153R polymorphism in myostatin gene increases the rate of promyostatin activation by furin. FEBS Letters, 2015, 589, 295-301.	1.3	34
27	RAS Activation. , 2014, , 1-4.		0
28	EGF regulates tyrosine phosphorylation and membrane-translocation of the scaffold protein Tks5. Journal of Molecular Signaling, 2013, 8, 8.	0.5	16
29	Multiple fuzzy interactions in the moonlighting function of thymosin- \hat{l}^24 . Intrinsically Disordered Proteins, 2013, 1, e26204.	1.9	12
30	Frank-ter Haar Syndrome Protein Tks4 Regulates Epidermal Growth Factor-dependent Cell Migration. Journal of Biological Chemistry, 2012, 287, 31321-31329.	1.6	28
31	Complex formation of EphB1/Nck/Caskin1 leads to tyrosine phosphorylation and structural changes of the Caskin1 SH3 domain. Cell Communication and Signaling, 2012, 10, 36.	2.7	18
32	The signaling pathway of Campylobacter jejuni-induced Cdc42 activation: Role of fibronectin, integrin beta1, tyrosine kinases and guanine exchange factor Vav2. Cell Communication and Signaling, 2011, 9, 32.	2.7	75
33	The Homolog of the Five SH3-Domain Protein (HOFI/SH3PXD2B) Regulates Lamellipodia Formation and Cell Spreading. PLoS ONE, 2011, 6, e23653.	1.1	35
34	RAS Activation. , 2011, , 3176-3178.		0
35	Functional classification of scaffold proteins and related molecules. FEBS Journal, 2010, 277, 4348-4355.	2.2	70
36	The ERK1/2-Hepatocyte Nuclear Factor 4α Axis Regulates Human ABCC6 Gene Expression in Hepatocytes. Journal of Biological Chemistry, 2010, 285, 22800-22808.	1.6	39

#	Article	IF	CITATIONS
37	High levels of structural disorder in scaffold proteins as exemplified by a novel neuronal protein, CASKâ€interactive protein1. FEBS Journal, 2009, 276, 3744-3756.	2.2	65
38	Mechanism of Lysophosphatidic Acid-Induced Amyloid Fibril Formation of \hat{l}^2 sub>2-Microglobulin <i>in Vitro</i> under Physiological Conditions. Biochemistry, 2009, 48, 5689-5699.	1.2	29
39	Many faces of Ras activation. Biochimica Et Biophysica Acta: Reviews on Cancer, 2008, 1786, 178-187.	3.3	149
40	Roles of cortactin in tumor pathogenesis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2007, 1775, 263-273.	3.3	62
41	Cortactin is required for integrin-mediated cell spreading. Immunology Letters, 2006, 104, 124-130.	1.1	13
42	Structural disorder throws new light on moonlighting. Trends in Biochemical Sciences, 2005, 30, 484-489.	3.7	430
43	Protein kinase C modulates negatively the hepatocyte growth factor-induced migration, integrin expression and phosphatidylinositol 3-kinase activation. Cellular Signalling, 2004, 16, 505-513.	1.7	8
44	Phorbol ester-induced migration of HepG2 cells is accompanied by intensive stress fibre formation, enhanced integrin expression and transient down-regulation of p21-activated kinase 1. Cellular Signalling, 2003, 15, 307-318.	1.7	17
45	Mechanism of Epidermal Growth Factor Regulation of Vav2, a Guanine Nucleotide Exchange Factor for Rac. Journal of Biological Chemistry, 2003, 278, 5163-5171.	1.6	100
46	The Nck family of adapter proteins. Cellular Signalling, 2002, 14, 723-731.	1.7	217
47	Membrane-targeting is critical for the phosphorylation of Vav2 by activated EGF receptor. Cellular Signalling, 2001, 13, 475-481.	1.7	19
48	Membrane-targeting of signalling molecules by SH2/SH3 domain-containing adaptor proteins. BBA - Biomembranes, 1999, 1422, 187-204.	7.9	117
49	Characterization of Interactions of Nck with Sos and Dynamin. Cellular Signalling, 1999, 11, 25-29.	1.7	40
50	Requirement of multiple SH3 domains of Nck for ligand binding. Cellular Signalling, 1999, 11, 253-262.	1.7	36
51	Association of Nck with tyrosine-phosphorylated SLP-76 in activated T lymphocytes. European Journal of Immunology, 1999, 29, 1068-1075.	1.6	95
52	Phosphatidylinositol 3-kinase Contributes to Erk1/Erk2 MAP Kinase Activation Associated with Hepatocyte Growth Factor-induced Cell Scattering. Cellular Signalling, 1999, 11, 885-890.	1.7	66
53	Shrinkage-induced Protein Tyrosine Phosphorylation in Chinese Hamster Ovary Cells. Journal of Biological Chemistry, 1997, 272, 16670-16678.	1.6	46
54	Interactions of Cbl with Two Adaptor Proteins, Grb2 and Crk, upon T Cell Activation. Journal of Biological Chemistry, 1996, 271, 6159-6163.	1.6	128

LÃiszló Buday

#	Article	IF	CITATIONS
55	Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature, 1993, 363, 45-51.	13.7	1,260
56	Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell, 1993, 73, 611-620.	13.5	1,082