Yong-Xiang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8864916/publications.pdf

Version: 2024-02-01

70 papers

2,066 citations

331259 21 h-index 253896 43 g-index

71 all docs

71 docs citations

71 times ranked

2949 citing authors

#	Article	IF	CITATIONS
1	Arl2-GTP and Arl3-GTP regulate a GDI-like transport system for farnesylated cargo. Nature Chemical Biology, 2011, 7, 942-949.	3.9	231
2	a Totally Synthetic, Self-Assembling, Adjuvant-Free MUC1 Glycopeptide Vaccine for Cancer Therapy. Journal of the American Chemical Society, 2012, 134, 8730-8733.	6.6	192
3	Bioorthogonal Chemistry for Site-Specific Labeling and Surface Immobilization of Proteins. Accounts of Chemical Research, 2011, 44, 762-773.	7.6	156
4	Specific Knockdown of Endogenous Tau Protein by Peptide-Directed Ubiquitin-Proteasome Degradation. Cell Chemical Biology, 2016, 23, 453-461.	2.5	147
5	A <i>\hat{I}^2</i> 42 and A <i>\hat{I}^2</i> 40: similarities and differences. Journal of Peptide Science, 2015, 21, 522-529.	0.8	124
6	Structural basis for Arl3-specific release of myristoylated ciliary cargo from UNC119. EMBO Journal, 2012, 31, 4085-4094.	3.5	101
7	Phosphorylation induces distinct alpha-synuclein strain formation. Scientific Reports, 2016, 6, 37130.	1.6	79
8	Alternative O-GlcNAcylation/O-Phosphorylation of Ser16 Induce Different Conformational Disturbances to the N Terminus of Murine Estrogen Receptor β. Chemistry and Biology, 2006, 13, 937-944.	6.2	74
9	Synthesis of the Rheb and Kâ€Ras4B GTPases. Angewandte Chemie - International Edition, 2010, 49, 6090-6095.	7.2	7 3
10	The interplay between RPGR, PDEδ and Arl2/3 regulate the ciliary targeting of farnesylated cargo. EMBO Reports, 2013, 14, 465-472.	2.0	64
11	Targeting STING with cyclic di-GMP greatly augmented immune responses of glycopeptide cancer vaccines. Chemical Communications, 2018, 54, 9655-9658.	2.2	43
12	Hydrophobic tagging-mediated degradation of Alzheimer's disease related Tau. RSC Advances, 2017, 7, 40362-40366.	1.7	40
13	A novel STING agonist for cancer immunotherapy and a SARS-CoV-2 vaccine adjuvant. Chemical Communications, 2021, 57, 504-507.	2.2	36
14	Antimicrobial activity of human islet amyloid polypeptides: an insight into amyloid peptides' connection with antimicrobial peptides. Biological Chemistry, 2012, 393, 641-646.	1.2	35
15	Phosphorylation Weakens but Does Not Inhibit Membrane Binding and Clustering of K-Ras4B. ACS Chemical Biology, 2017, 12, 1703-1710.	1.6	33
16	Glycopeptide Nanoconjugates Based on Multilayer Self-Assembly as an Antitumor Vaccine. Bioconjugate Chemistry, 2015, 26, 1439-1442.	1.8	31
17	TDP-43 specific reduction induced by Di-hydrophobic tags conjugated peptides. Bioorganic Chemistry, 2019, 84, 254-259.	2.0	31
18	Phosphorylation at Ser8 as an Intrinsic Regulatory Switch to Regulate the Morphologies and Structures of Alzheimer's 40-residue β-Amyloid (Aβ40) Fibrils. Journal of Biological Chemistry, 2017, 292, 2611-2623.	1.6	29

#	Article	IF	Citations
19	Fully Synthetic Invariant NKT Cell-Dependent Self-Adjuvanting Antitumor Vaccines Eliciting Potent Immune Response in Mice. Molecular Pharmaceutics, 2020, 17, 417-425.	2.3	24
20	Chitosan nanoparticles based nanovaccines for cancer immunotherapy. Pure and Applied Chemistry, 2017, 89, 931-939.	0.9	21
21	Exploring the Roles of Post-Translational Modifications in the Pathogenesis of Parkinson's Disease Using Synthetic and Semisynthetic Modified α-Synuclein. ACS Chemical Neuroscience, 2019, 10, 910-921.	1.7	21
22	Characterizing the assembly behaviors of human amylin: a perspective derived from C-terminal variants. Chemical Communications, 2013, 49, 1799-1801.	2.2	20
23	Chemical Synthesis of Integral Membrane Proteins: Methods and Applications. Israel Journal of Chemistry, 2011, 51, 940-952.	1.0	19
24	Covalent Bond or Noncovalent Bond: A Supramolecular Strategy for the Construction of Chemically Synthesized Vaccines. Chemistry - A European Journal, 2014, 20, 13541-13546.	1.7	19
25	Differential Modulation of the Aggregation of Nâ€Terminal Truncated Aβ using Cucurbiturils. Chemistry - A European Journal, 2018, 24, 13647-13653.	1.7	19
26	Phosphorylated and Phosphonated Lowâ€Complexity Protein Segments for Biomimetic Mineralization and Repair of Tooth Enamel. Advanced Science, 2022, 9, e2103829.	5.6	19
27	Facile synthesis of cyclopeptide-centered multivalent glycoclusters with â€~click chemistry' and molecular recognition study by surface plasmon resonance. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3775-3778.	1.0	17
28	Direct immobilization of oxyamine-modified proteins from cell lysates. Chemical Communications, 2012, 48, 10829.	2.2	17
29	Investigation of the Assembly Behavior of an Amphiphilic Lipopeptide at the Liquid Crystal–Aqueous Interface. Langmuir, 2019, 35, 2490-2497.	1.6	17
30	Synthesis of $\hat{l}\pm,\hat{l}\pm$ -Difluorinated Phosphonate pSer/pThr Mimetics via Rhodium-Catalyzed Asymmetric Hydrogenation of \hat{l}^2 -Difluorophosphonomethyl $\hat{l}\pm$ -(Acylamino)acrylates. Organic Letters, 2018, 20, 3278-3281.	2.4	16
31	CASTING: A Potent Supramolecular Strategy to Cytosolically Deliver STING Agonist for Cancer Immunotherapy and SARS-CoV-2 Vaccination. CCS Chemistry, 2023, 5, 885-901.	4.6	16
32	Facile synthesis of Fmoc-protected phosphonate pSer mimetic and its application in assembling a substrate peptide of 14-3-3 î¶. Tetrahedron Letters, 2017, 58, 2551-2553.	0.7	15
33	Selfâ€Assembled Nanoâ€Immunostimulant for Synergistic Immune Activation. ChemBioChem, 2017, 18, 1721-1729.	1.3	15
34	Influence of Serine O-Glycosylation or O-Phoshorylation Close to the vJun Nuclear Localisation Sequence on Nuclear Import. ChemBioChem, 2006, 7, 88-97.	1.3	14
35	Rational design of an orthosteric regulator of hIAPP aggregation. Chemical Communications, 2015, 51, 2095-2098.	2.2	14
36	Selective inhibition of cancer cells by enzyme-induced gain of function of phosphorylated melittin analogues. Chemical Science, 2017, 8, 7675-7681.	3.7	14

#	Article	IF	CITATIONS
37	Synthetic MUC1 Antitumor Vaccine Candidates with Varied Glycosylation Pattern Bearing <i>R/S</i> â€configured Pam ₃ CysSerLys ₄ . ChemBioChem, 2016, 17, 1412-1415.	1.3	13
38	<i>De Novo</i> Design To Synthesize Lanthipeptides Involving Cascade Cysteine Reactions: SapB Synthesis as an Example. Journal of Organic Chemistry, 2018, 83, 7528-7533.	1.7	13
39	Uncovering the pathological functions of Ser404 phosphorylation by semisynthesis of a phosphorylated TDP-43 prion-like domain. Chemical Communications, 2020, 56, 5370-5373.	2.2	13
40	A host–guest ATP responsive strategy for intracellular delivery of phosphopeptides. Chemical Communications, 2020, 56, 5512-5515.	2,2	13
41	Stereoselective synthesis of a phosphonate pThr mimetic <i>via</i> palladium-catalyzed γ-C(sp ³)â€"H activation for peptide preparation. Organic and Biomolecular Chemistry, 2019, 17, 2099-2102.	1.5	11
42	A covalently reactive group-modified peptide that specifically reacts with lysine 16 in amyloid \hat{l}^2 . Chemical Communications, 2012, 48, 10565.	2,2	10
43	Clearance of the intracellular high level of the Tau protein directed by an artificial synthetic hydrolase. Molecular BioSystems, 2014, 10, 3081-3085.	2.9	10
44	Chemical Methods to Knock Down the Amyloid Proteins. Molecules, 2017, 22, 916.	1.7	10
45	Synthesis of an MUC1 Glycopeptide Dendrimer Based on β-Cyclodextrin by Click Chemistry. Synlett, 2017, 28, 1961-1965.	1.0	9
46	Intrinsically Disordered Protein Condensate-Modified Surface for Mitigation of Biofouling and Foreign Body Response. Journal of the American Chemical Society, 2022, 144, 12147-12157.	6.6	9
47	A multi-functional peptide as an HIV-1 entry inhibitor based on self-concentration, recognition, and covalent attachment. Organic and Biomolecular Chemistry, 2012, 10, 6512.	1.5	8
48	Strategy for Designing a Synthetic Tumor Vaccine: Multi-Component, Multivalency and Antigen Modification. Vaccines, 2014, 2, 549-562.	2.1	8
49	Azacalix[2]arene[2]carbazoles: synthesis, structure and properties. RSC Advances, 2016, 6, 27988-27992.	1.7	8
50	Semiâ€synthesis of murine prion protein by native chemical ligation and chemical activation for preparation of polypeptideâ€Î± â€thioester. Journal of Peptide Science, 2017, 23, 438-444.	0.8	8
51	Prophylactic Vaccine Based on Pyroglutamate-3 Amyloid β Generates Strong Antibody Response and Rescues Cognitive Decline in Alzheimer's Disease Model Mice. ACS Chemical Neuroscience, 2017, 8, 454-459.	1.7	8
52	Inward Budding and Endocytosis of Membranes Regulated by de Novo Designed Peptides. Langmuir, 2018, 34, 6183-6193.	1.6	8
53	Modern Peptide and Protein Chemistry: Reaching New Heights. Journal of Organic Chemistry, 2020, 85, 1328-1330.	1.7	8
54	Metal ion and light sequentially induced sol–gel–sol transition of a responsive peptide-hydrogel. Soft Matter, 2020, 16, 7652-7658.	1.2	7

#	Article	IF	CITATIONS
55	Stabilization of the RAS:PDE6D Complex Is a Novel Strategy to Inhibit RAS Signaling. Journal of Medicinal Chemistry, 2022, 65, 1898-1914.	2.9	7
56	Tau Protein Associated Inhibitors in Alzheimer Disease. Chinese Journal of Chemistry, 2014, 32, 964-968.	2.6	6
57	Inhibition of K-Ras4B-plasma membrane association with a membrane microdomain-targeting peptide. Chemical Science, 2020, $11,826-832$.	3.7	6
58	Recent Advances in Postâ€polymerization Modifications on Polypeptides: Synthesis and Applications. Chemistry - an Asian Journal, 2022, 17, .	1.7	6
59	Unremitting progresses for phosphoprotein synthesis. Current Opinion in Chemical Biology, 2020, 58, 96-111.	2.8	5
60	Facile synthesis of a pentasaccharide mimic of a fragment of the capsular polysaccharide of Streptococcus pneumoniae type 15C. Carbohydrate Research, 2008, 343, 607-614.	1.1	4
61	Cucurbit[8]uril facilitated Michael addition for regioselective cysteine modification. Chemical Communications, 2021, 57, 6086-6089.	2.2	4
62	Phosphorylation regulates proteolytic efficiency of TEV protease detected by a 5(6)-carboxyfluorescein-pyrene based fluorescent sensor. Talanta, 2016, 150, 340-345.	2.9	3
63	Addition of artificial salt bridge by Ile646Lys mutation in gp41 coiled-coil domain regulates 6-helical bundle formation. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2727-2732.	1.0	2
64	Dual-labeling of ubiquitin proteins by chemoselective reactions for sensing UCH-L3. Molecular BioSystems, 2016, 12, 1764-1767.	2.9	2
65	Helices with Rational Residues Conduct Different Modulations towards AÎ ² Aggregation. Chemistry Letters, 2017, 46, 979-982.	0.7	2
66	A site-specific branching poly-glutamate tag mediates intracellular protein delivery by cationic lipids. Biochemical and Biophysical Research Communications, 2018, 503, 671-676.	1.0	2
67	Different phosphorylation and farnesylation patterns tune Rnd3–14-3-3 interaction in distinct mechanisms. Chemical Science, 2021, 12, 4432-4442.	3.7	2
68	Short Peptide Segment and Insulin Co-Assembly Forms Cytotoxic Oligomers. International Journal of Peptide Research and Therapeutics, 2013, 19, 185-189.	0.9	1
69	New progress in active immunotherapy targeting to amyloid beta. Science China Chemistry, 2015, 58, 383-389.	4.2	1
70	Facile Synthesis of Boc-Protected Selenocystine and its Compatibility with Late-Stage Farnesylation at Cysteine Site. Protein and Peptide Letters, 2021, 28, 603-611.	0.4	0