Alexander B Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8864703/publications.pdf

Version: 2024-02-01

77 papers

4,919 citations

34 h-index 68 g-index

82 all docs 82 docs citations

82 times ranked 7550 citing authors

#	Article	IF	CITATIONS
1	Schistosome Sulfotransferases: Mode of Action, Expression and Localization. Pharmaceutics, 2022, 14, 1416.	2.0	3
2	Nucleic acid binding by SAMHD1 contributes to the antiretroviral activity and is enhanced by the GpsN modification. Nature Communications, 2021, 12, 731.	5.8	26
3	A pH Switch Controls Zinc Binding in Tomato Copper–Zinc Superoxide Dismutase. Biochemistry, 2021, 60, 1597-1608.	1.2	O
4	Rational approach to drug discovery for human schistosomiasis. International Journal for Parasitology: Drugs and Drug Resistance, 2021, 16, 140-147.	1.4	8
5	An iterative process produces oxamniquine derivatives that kill the major species of schistosomes infecting humans. PLoS Neglected Tropical Diseases, 2020, 14, e0008517.	1.3	10
6	Molecular basis for hycanthone drug action in schistosome parasites. Molecular and Biochemical Parasitology, 2020, 236, 111257.	0.5	10
7	Why does oxamniquine kill Schistosoma mansoni and not S. haematobium and S. japonicum?. International Journal for Parasitology: Drugs and Drug Resistance, 2020, 13, 8-15.	1.4	15
8	Structure of a Zinc Porphyrin-Substituted Bacterioferritin and Photophysical Properties of Iron Reduction. Biochemistry, 2020, 59, 1618-1629.	1.2	2
9	Structural Adaptation in Its Orphan Domain Engenders Betaglycan with an Alternate Mode of Growth Factor Binding Relative to Endoglin. Structure, 2019, 27, 1427-1442.e4.	1.6	12
10	Paratope Duality and Gullying are Among the Atypical Recognition Mechanisms Used by a Trio of Nanobodies to Differentiate Ebolavirus Nucleoproteins. Journal of Molecular Biology, 2019, 431, 4848-4867.	2.0	5
11	Oxamniquine resistance alleles are widespread in Old World Schistosoma mansoni and predate drug deployment. PLoS Pathogens, 2019, 15, e1007881.	2.1	28
12	Disulfide bond of <i>Mycoplasma pneumoniae</i> communityâ€acquired respiratory distress syndrome toxin is essential to maintain the ADPâ€ribosylating and vacuolating activities. Cellular Microbiology, 2019, 21, e13032.	1.1	7
13	A mutually induced conformational fit underlies Ca2+-directed interactions between calmodulin and the proximal C terminus of KCNQ4 K+ channels. Journal of Biological Chemistry, 2019, 294, 6094-6112.	1.6	13
14	<i>Mycoplasma pneumoniae</i> Community-Acquired Respiratory Distress Syndrome Toxin Uses a Novel KELED Sequence for Retrograde Transport and Subsequent Cytotoxicity. MBio, 2018, 9, .	1.8	14
15	Design, Synthesis, and Characterization of Novel Small Molecules as Broad Range Antischistosomal Agents. ACS Medicinal Chemistry Letters, 2018, 9, 967-973.	1.3	17
16	High affinity interactions of Pb ²⁺ with synaptotagmin I. Metallomics, 2018, 10, 1211-1222.	1.0	6
17	An engineered transforming growth factor \hat{l}^2 (TGF- \hat{l}^2) monomer that functions as a dominant negative to block TGF- \hat{l}^2 signaling. Journal of Biological Chemistry, 2017, 292, 7173-7188.	1.6	34
18	Non-Native Metal Ion Reveals the Role of Electrostatics in Synaptotagmin 1–Membrane Interactions. Biochemistry, 2017, 56, 3283-3295.	1.2	20

#	Article	IF	Citations
19	Copper-zinc superoxide dismutase is activated through a sulfenic acid intermediate at a copper ion entry site. Journal of Biological Chemistry, 2017, 292, 12025-12040.	1.6	48
20	Structural and enzymatic insights into species-specific resistance to schistosome parasite drug therapy. Journal of Biological Chemistry, 2017, 292, 11154-11164.	1.6	24
21	Structure-Based Design and Synthesis of Potent and Selective Matrix Metalloproteinase 13 Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 5816-5825.	2.9	35
22	Unveiling a Drift Resistant Cryptotope within Marburgvirus Nucleoprotein Recognized by Llama Single-Domain Antibodies. Frontiers in Immunology, 2017, 8, 1234.	2.2	15
23	Metal dependence and branched RNA cocrystal structures of the RNA lariat debranching enzyme Dbr1. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14727-14732.	3.3	24
24	Domain Movements upon Activation of Phenylalanine Hydroxylase Characterized by Crystallography and Chromatography-Coupled Small-Angle X-ray Scattering. Journal of the American Chemical Society, 2016, 138, 6506-6516.	6.6	100
25	KDM2B Recruitment of the Polycomb Group Complex, PRC1.1, Requires Cooperation between PCGF1 and BCORL1. Structure, 2016, 24, 1795-1801.	1.6	49
26	The Phylogeny and Active Site Design of Eukaryotic Copper-only Superoxide Dismutases. Journal of Biological Chemistry, 2016, 291, 20911-20923.	1.6	27
27	RING Dimerization Links Higher-Order Assembly of TRIM5 $\hat{l}\pm$ to Synthesis of K63-Linked Polyubiquitin. Cell Reports, 2015, 12, 788-797.	2.9	72
28	Structure of CARDS toxin, a unique ADP-ribosylating and vacuolating cytotoxin from <i>Mycoplasma pneumoniae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5165-5170.	3.3	61
29	Insights into the Role of the Unusual Disulfide Bond in Copper-Zinc Superoxide Dismutase. Journal of Biological Chemistry, 2015, 290, 2405-2418.	1.6	61
30	Structural and Functional Characterization of the Enantiomers of the Antischistosomal Drug Oxamniquine. PLoS Neglected Tropical Diseases, 2015, 9, e0004132.	1.3	20
31	Structural basis of HIV-1 capsid recognition by PF74 and CPSF6. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18625-18630.	3.3	215
32	Characterization of Selective Exosite-Binding Inhibitors of Matrix Metalloproteinase 13 That Prevent Articular Cartilage Degradation in Vitro. Journal of Medicinal Chemistry, 2014, 57, 9598-9611.	2.9	29
33	Structural basis of lariat RNA recognition by the intron debranching enzyme Dbr1. Nucleic Acids Research, 2014, 42, 10845-10855.	6.5	42
34	<i>Candida albicans</i> SOD5 represents the prototype of an unprecedented class of Cu-only superoxide dismutases required for pathogen defense. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5866-5871.	3.3	99
35	Multiple polymer architectures of human polyhomeotic homolog 3 sterile alpha motif. Proteins: Structure, Function and Bioinformatics, 2014, 82, 2823-2830.	1.5	11
36	Structure of the Polycomb Group Protein PCGF1 in Complex with BCOR Reveals Basis for Binding Selectivity of PCGF Homologs. Structure, 2013, 21, 665-671.	1.6	89

#	Article	IF	CITATIONS
37	Genetic and Molecular Basis of Drug Resistance and Species-Specific Drug Action in Schistosome Parasites. Science, 2013, 342, 1385-1389.	6.0	137
38	Cd ²⁺ as a Ca ²⁺ Surrogate in Protein–Membrane Interactions: Isostructural but Not Isofunctional. Journal of the American Chemical Society, 2013, 135, 12980-12983.	6.6	12
39	Structure of the Flavoprotein Tryptophan 2-Monooxygenase, a Key Enzyme in the Formation of Galls in Plants. Biochemistry, 2013, 52, 2620-2626.	1.2	26
40	Structure of the Chlamydia trachomatis Immunodominant Antigen Pgp3. Journal of Biological Chemistry, 2013, 288, 22068-22079.	1.6	41
41	Evaluation of competing J domain:Hsp70 complex models in light of existing mutational and NMR data. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E734; author reply E735.	3.3	13
42	Structure of the rhesus monkey TRIM5 \hat{l}_{\pm} PRYSPRY domain, the HIV capsid recognition module. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13278-13283.	3.3	83
43	Mechanistic and Structural Analyses of the Role of His67 in the Yeast Polyamine Oxidase Fms1. Biochemistry, 2012, 51, 4888-4897.	1.2	8
44	Mechanistic and Structural Analyses of the Roles of Active Site Residues in Yeast Polyamine Oxidase Fms1: Characterization of the N195A and D94N Enzymes. Biochemistry, 2012, 51, 8690-8697.	1.2	7
45	Histidine ligand variants of a flavo-diiron protein: effects on structure and activities. Journal of Biological Inorganic Chemistry, 2012, 17, 1231-1239.	1.1	32
46	Molecular Recognition of Insulin by a Synthetic Receptor. Journal of the American Chemical Society, 2011, 133, 8810-8813.	6.6	291
47	Structure and function of multiple Ca ²⁺ -binding sites in a K ⁺ channel regulator of K ⁺ conductance (RCK) domain. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17684-17689.	3.3	35
48	Polycomb Group Targeting through Different Binding Partners of RING1B C-Terminal Domain. Structure, 2010, 18, 966-975.	1.6	81
49	Crystallization of community-acquired respiratory distress syndrome toxin from <i>Mycoplasma pneumoniae</i> . Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 294-296.	0.7	4
50	Characterization of a Covalent Polysulfane Bridge in Copperâ^'Zinc Superoxide Dismutase,. Biochemistry, 2010, 49, 1191-1198.	1.2	34
51	Identification of a Hypothetical Protein from <i>Podospora anserina</i> as a Nitroalkane Oxidase. Biochemistry, 2010, 49, 5035-5041.	1.2	14
52	Structures of mouse SOD1 and human/mouse SOD1 chimeras. Archives of Biochemistry and Biophysics, 2010, 503, 183-190.	1.4	20
53	Disrupted Zinc-Binding Sites in Structures of Pathogenic SOD1 Variants D124V and H80R. Biochemistry, 2010, 49, 5714-5725.	1.2	50
54	Effects of pH on the Rieske Protein from Thermus thermophilus: A Spectroscopic and Structural Analysis,. Biochemistry, 2009, 48, 9848-9857.	1.2	32

#	Article	IF	CITATIONS
55	Structural and biophysical properties of metal-free pathogenic SOD1 mutants A4V and G93A. Archives of Biochemistry and Biophysics, 2009, 492, 40-47.	1.4	74
56	GAPDH Is Conformationally and Functionally Altered in Association with Oxidative Stress in Mouse Models of Amyotrophic Lateral Sclerosis. Journal of Molecular Biology, 2008, 382, 1195-1210.	2.0	70
57	Cooperative Assembly of TGF-β Superfamily Signaling Complexes Is Mediated by Two Disparate Mechanisms and Distinct Modes of Receptor Binding. Molecular Cell, 2008, 29, 157-168.	4.5	247
58	Structure of the Hsp110:Hsc70 Nucleotide Exchange Machine. Molecular Cell, 2008, 31, 232-243.	4.5	202
59	The crystal structure of Nep1 reveals an extended SPOUT-class methyltransferase fold and a pre-organized SAM-binding site. Nucleic Acids Research, 2008, 36, 1542-1554.	6.5	37
60	Allosteric Motions in Structures of Yeast NAD+-specific Isocitrate Dehydrogenase. Journal of Biological Chemistry, 2008, 283, 10872-10880.	1.6	44
61	Structures of the G85R Variant of SOD1 in Familial Amyotrophic Lateral Sclerosis. Journal of Biological Chemistry, 2008, 283, 16169-16177.	1.6	85
62	Crystal structure of the yeast nicotinamidase Pnc1p. Archives of Biochemistry and Biophysics, 2007, 461, 66-75.	1.4	27
63	Structural Basis of J Cochaperone Binding and Regulation of Hsp70. Molecular Cell, 2007, 28, 422-433.	4.5	206
64	Shall We Dance? How A Multicopper Oxidase Chooses Its Electron Transfer Partner. Accounts of Chemical Research, 2007, 40, 445-452.	7.6	194
65	Sequence-Specific Recognition and Cooperative Dimerization of N-Terminal Aromatic Peptides in Aqueous Solution by a Synthetic Host. Journal of the American Chemical Society, 2006, 128, 12574-12581.	6.6	304
66	Crystallization and preliminary X-ray crystallographic analysis of yeast NAD+-specific isocitrate dehydrogenase. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 486-488.	0.7	6
67	The copper-iron connection in biology: Structure of the metallo-oxidase Fet3p. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15459-15464.	3.3	176
68	Amyloid-like filaments and water-filled nanotubes formed by SOD1 mutant proteins linked to familial ALS. Nature Structural and Molecular Biology, 2003, 10, 461-467.	3.6	311
69	Structureâ^'Function Analysis of the Auxilin J-Domain Reveals an Extended Hsc70 Interaction Interfaceâ€,‡. Biochemistry, 2003, 42, 5748-5753.	1.2	58
70	Structure of Mycobacterium tuberculosis Methionine Sulfoxide Reductase A in Complex with Protein-Bound Methionine. Journal of Bacteriology, 2003, 185, 4119-4126.	1.0	70
71	An Alternative Mechanism of Bicarbonate-mediated Peroxidation by Copper-Zinc Superoxide Dismutase. Journal of Biological Chemistry, 2003, 278, 21032-21039.	1.6	77
72	Copper chaperones. Advances in Protein Chemistry, 2002, 60, 151-219.	4.4	33

#	Article	IF	CITATIONS
73	Crystal structure of the human TβR2 ectodomain–TGF-β3 complex. Nature Structural Biology, 2002, 9, 203-8.	9.7	130
74	Crystal Structures of Mitochondrial Processing Peptidase Reveal the Mode for Specific Cleavage of Import Signal Sequences. Structure, 2001, 9, 615-625.	1.6	208
7 5	Mechanism of the Phenylpyruvate Tautomerase Activity of Macrophage Migration Inhibitory Factor: Properties of the P1G, P1A, Y95F, and N97A Mutants,. Biochemistry, 2000, 39, 9671-9678.	1.2	26
76	Crystal Structure of Macrophage Migration Inhibitory Factor Complexed with (E)-2-Fluoro-p-hydroxycinnamate at 1.8 à Resolution:  Implications for Enzymatic Catalysis and Inhibition,. Biochemistry, 1999, 38, 7444-7452.	1.2	83
77	Crystal Structure of 4-Oxalocrotonate Tautomerase Inactivated by 2-Oxo-3-pentynoate at 2.4 Ã Resolution: Analysis and Implications for the Mechanism of Inactivation and Catalysisâ€,‡. Biochemistry, 1998, 37, 14692-14700.	1.2	73