
Zaihua Duan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8864507/publications.pdf Version: 2024-02-01

Ζλιμιιλ ΠιιλΝ

#	Article	IF	CITATIONS
1	Facile, Flexible, Cost-Saving, and Environment-Friendly Paper-Based Humidity Sensor for Multifunctional Applications. ACS Applied Materials & Interfaces, 2019, 11, 21840-21849.	8.0	326
2	Paper-Based Sensors for Gas, Humidity, and Strain Detections: A Review. ACS Applied Materials & Interfaces, 2020, 12, 31037-31053.	8.0	296
3	Enhanced ammonia response of Ti3C2T nanosheets supported by TiO2 nanoparticles at room temperature. Sensors and Actuators B: Chemical, 2019, 298, 126874.	7.8	222
4	Evolution of breath analysis based on humidity and gas sensors: Potential and challenges. Sensors and Actuators B: Chemical, 2020, 318, 128104.	7.8	217
5	An integrated flexible self-powered wearable respiration sensor. Nano Energy, 2019, 63, 103829.	16.0	181
6	Recent advances in humidity sensors for human body related humidity detection. Journal of Materials Chemistry C, 2021, 9, 14963-14980.	5.5	167
7	Halloysite nanotubes: Natural, environmental-friendly and low-cost nanomaterials for high-performance humidity sensor. Sensors and Actuators B: Chemical, 2020, 317, 128204.	7.8	160
8	A facile respiration-driven triboelectric nanogenerator for multifunctional respiratory monitoring. Nano Energy, 2019, 58, 312-321.	16.0	143
9	Ultrasensitive flexible NH3 gas sensor based on polyaniline/SrGe4O9 nanocomposite with ppt-level detection ability at room temperature. Sensors and Actuators B: Chemical, 2020, 319, 128293.	7.8	129
10	A review on Ti3C2Tx-based nanomaterials: synthesis and applications in gas and humidity sensors. Rare Metals, 2021, 40, 1459-1476.	7.1	121
11	Daily writing carbon ink: Novel application on humidity sensor with wide detection range, low detection limit and high detection resolution. Sensors and Actuators B: Chemical, 2021, 339, 129884.	7.8	113
12	PANI nanofibers-supported Nb2CTx nanosheets-enabled selective NH3 detection driven by TENG at room temperature. Sensors and Actuators B: Chemical, 2021, 327, 128923.	7.8	108
13	Highly sensitive and selective NO2 sensor of alkalized V2CT MXene driven by interlayer swelling. Sensors and Actuators B: Chemical, 2021, 344, 130150.	7.8	104
14	Ultrathin Nb2CT nanosheets-supported polyaniline nanocomposite: Enabling ultrasensitive NH3 detection. Sensors and Actuators B: Chemical, 2021, 343, 130069.	7.8	94
15	Paper and carbon ink enabled low-cost, eco-friendly, flexible, multifunctional pressure and humidity sensors. Smart Materials and Structures, 2021, 30, 055012.	3.5	91
16	Simultaneous Biomechanical and Biochemical Monitoring for Self-Powered Breath Analysis. ACS Applied Materials & Interfaces, 2022, 14, 7301-7310.	8.0	86
17	A Nb2CTx/sodium alginate-based composite film with neuron-like network for self-powered humidity sensing. Chemical Engineering Journal, 2022, 438, 135588.	12.7	86
18	An ingenious strategy for improving humidity sensing properties of multi-walled carbon nanotubes via poly-L-lysine modification. Sensors and Actuators B: Chemical, 2019, 289, 182-185.	7.8	79

ZAIHUA DUAN

#	Article	IF	CITATIONS
19	Novel application of attapulgite on high performance and low-cost humidity sensors. Sensors and Actuators B: Chemical, 2020, 305, 127534.	7.8	79
20	Inspiration from Daily Goods: A Low-Cost, Facilely Fabricated, and Environment-Friendly Strain Sensor Based on Common Carbon Ink and Elastic Core-Spun Yarn. ACS Sustainable Chemistry and Engineering, 2019, 7, 17474-17481.	6.7	76
21	A do-it-yourself approach to achieving a flexible pressure sensor using daily use materials. Journal of Materials Chemistry C, 2021, 9, 13659-13667.	5.5	76
22	Edge-enriched MoS2 nanosheets modified porous nanosheet-assembled hierarchical In2O3 microflowers for room temperature detection of NO2 with ultrahigh sensitivity and selectivity. Journal of Hazardous Materials, 2022, 434, 128836.	12.4	73
23	Super-fast response humidity sensor based on La0.7Sr0.3MnO3 nanocrystals prepared by PVP-assisted sol-gel method. Sensors and Actuators B: Chemical, 2018, 258, 527-534.	7.8	71
24	Power generation humidity sensor based on primary battery structure. Chemical Engineering Journal, 2022, 446, 136910.	12.7	66
25	Enhanced positive humidity sensitive behavior of p-reduced graphene oxide decorated with n-WS2 nanoparticles. Rare Metals, 2021, 40, 1762-1767.	7.1	62
26	Novel chitosan/ZnO bilayer film with enhanced humidity-tolerant property: Endowing triboelectric nanogenerator with acetone analysis capability. Nano Energy, 2020, 78, 105256.	16.0	61
27	Enhanced NH3 sensing performance of polyaniline via a facile morphology modification strategy. Sensors and Actuators B: Chemical, 2022, 369, 132302.	7.8	61
28	Edgeâ€Enriched Mo ₂ TiC ₂ T _x /MoS ₂ Heterostructure with Coupling Interface for Selective NO ₂ Monitoring. Advanced Functional Materials, 2022, 32, .	14.9	58
29	Drawn a facile sensor: A fast response humidity sensor based on pencil-trace. Sensors and Actuators B: Chemical, 2018, 261, 345-353.	7.8	52
30	High performance humidity sensor based on 3D mesoporous Co3O4 hollow polyhedron for multifunctional applications. Applied Surface Science, 2022, 585, 152698.	6.1	52
31	Enhanced humidity sensing properties of SmFeO3-modified MoS2 nanocomposites based on the synergistic effect. Sensors and Actuators B: Chemical, 2018, 272, 459-467.	7.8	51
32	The Art of Integrated Functionalization: Super Stable Black Phosphorus Achieved through Metalâ€Organic Framework Coating. Advanced Functional Materials, 2020, 30, 2002232.	14.9	51
33	Enhanced Blocking Effect: A New Strategy to Improve the NO ₂ Sensing Performance of Ti ₃ C ₂ T _{<i>x</i>} by γ-Poly(<scp>I</scp> -glutamic acid) Modification. ACS Sensors, 2021, 6, 2858-2867.	7.8	51
34	Gold-loaded tellurium nanobelts gas sensor for ppt-level NO2 detection at room temperature. Sensors and Actuators B: Chemical, 2022, 355, 131300.	7.8	49
35	Facilely constructed two-sided microstructure interfaces between electrodes and cellulose paper active layer: eco-friendly, low-cost and high-performance piezoresistive sensor. Cellulose, 2021, 28, 6389.	4.9	48
36	A chitosan/amido-graphene oxide-based self-powered humidity sensor enabled by triboelectric effect. Rare Metals, 2021, 40, 1995-2003.	7.1	47

ZAIHUA DUAN

#	Article	IF	CITATIONS
37	Constructing Electrically and Mechanically Self-Healing Elastomers by Hydrogen Bonded Intermolecular Network. Langmuir, 2020, 36, 3029-3037.	3.5	45
38	High performance ethylene sensor based on palladium-loaded tin oxide: Application in fruit quality detection. Chinese Chemical Letters, 2020, 31, 2045-2049.	9.0	44
39	Ag2Te nanowires for humidity-resistant trace-level NO2 detection at room temperature. Sensors and Actuators B: Chemical, 2022, 363, 131790.	7.8	42
40	Facile and low-cost fabrication of a humidity sensor using naturally available sepiolite nanofibers. Nanotechnology, 2020, 31, 355501.	2.6	39
41	Fabrication of electrospun LaFeO3 nanotubes via annealing technique for fast ethanol detection. Materials Letters, 2018, 215, 58-61.	2.6	34
42	Facile primary battery-based humidity sensor for multifunctional application. Sensors and Actuators B: Chemical, 2022, 370, 132369.	7.8	34
43	Integrated cross-section interface engineering and surface encapsulating strategy: A high-response, waterproof, and low-cost paper-based bending strain sensor. Journal of Materials Chemistry C, 2021, 9, 14003-14011.	5.5	33
44	Protrusion Microstructure-Induced Sensitivity Enhancement for Zinc Oxide–Carbon Nanotube Flexible Pressure Sensors. ACS Applied Electronic Materials, 2021, 3, 5506-5513.	4.3	28
45	Facilely constructed randomly distributed surface microstructure for flexible strain sensor with high sensitivity and low detection limit. Journal Physics D: Applied Physics, 2021, 54, 284003.	2.8	23
46	Mixed-Potential-Type Gas Sensors Based on Pt/YSZ Film/LaFeO3 for Detecting NO2. Journal of Electronic Materials, 2017, 46, 6895-6900.	2.2	22
47	Wearable and washable textile-based strain sensors via a single-step, environment-friendly method. Science China Technological Sciences, 2021, 64, 441-450.	4.0	18
48	Designing Cu ²⁺ as a Partial Substitution of Protons in Polyaniline Emeraldine Salt: Room-Temperature-Recoverable H ₂ S Sensing Properties and Mechanism Study. ACS Applied Materials & Interfaces, 2022, 14, 27203-27213.	8.0	16
49	Humidity sensing properties of LnFeO ₃ nanofibers synthesized by electrospinning (Ln = Sm,) Tj ETQc	1 1 0.784 1.6	1314 rgBT /€ 13
50	A Facile Strategy for Low Young's Modulus PDMS Microbeads Enhanced Flexible Capacitive Pressure Sensors. Particle and Particle Systems Characterization, 2021, 38, 2100019.	2.3	13
51	Drawn a flexible, low-cost, eco-friendly, and multifunctional humidity sensor on paper using carbon ink. , 2020, , .		1
52	MXeneå∰æ°"æ•ææ–™: 最新èز›å±•ä¸Žæœªæ¥æŒ'æ~. Chinese Science Bulletin, 2022, , .	0.7	1
53	A Facile Strategy for Low Young's Modulus PDMS Microbeads Enhanced Flexible Capacitive Pressure Sensors (Part. Part. Syst. Charact. 7/2021). Particle and Particle Systems Characterization, 2021, 38, 2170016.	2.3	0
54	Enhanced NH3 Sensing Performance of Ti3C2T x Nanosheets Supported By TiO2 Nanoparticles at Room Temperature. ECS Meeting Abstracts, 2020, MA2020-01, 2162-2162.	0.0	0

#	Article	IF	CITATIONS
55	Ultrathin niobium carbide nanosheets for humidity sensing. , 2020, , .		Ο