Bo HÃ¥kansson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8864216/publications.pdf

Version: 2024-02-01

84 papers

3,861 citations

34 h-index 59 g-index

88 all docs 88 docs citations

88 times ranked 2069 citing authors

#	Article	IF	CITATIONS
1	A novel method for objective in-situ measurement of audibility in bone conduction hearing devices – a pilot study using a skin drive BCD. International Journal of Audiology, 2022, , 1-5.	1.7	3
2	Consensus Statement on Bone Conduction Devices and Active Middle Ear Implants in Conductive and Mixed Hearing Loss. Otology and Neurotology, 2022, 43, 513-529.	1.3	22
3	Long-term follow-up and review of the Bone Conduction Implant. Hearing Research, 2022, , 108503.	2.0	О
4	Bone Conduction Stimulated VEMP Using the B250 Transducer. Medical Devices: Evidence and Research, 2021, Volume 14, 225-237.	0.8	2
5	A case series shows independent vestibular labyrinthine function after major surgical trauma to the human cochlea. Communications Medicine, $2021,1,.$	4.2	6
6	<p>The Mechanical Impedance of the Human Skull via Direct Bone Conduction Implants</p> . Medical Devices: Evidence and Research, 2020, Volume 13, 293-313.	0.8	9
7	Neural feedback strategies to improve grasping coordination in neuromusculoskeletal prostheses. Scientific Reports, 2020, 10, 11793.	3.3	49
8	Three-Year Follow-Up with the Bone Conduction Implant. Audiology and Neuro-Otology, 2020, 25, 263-275.	1.3	3
9	Effect of transducer attachment on vibration transmission and transcranial attenuation for direct drive bone conduction stimulation. Hearing Research, 2019, 381, 107763.	2.0	22
10	<p>Nasal sound pressure as objective verification of implant in active transcutaneous bone conduction devices</p> . Medical Devices: Evidence and Research, 2019, Volume 12, 193-202.	0.8	5
11	The bone conduction implant – a review and 1-year follow-up. International Journal of Audiology, 2019, 58, 945-955.	1.7	17
12	Robustness and lifetime of the bone conduction implant – a pilot study. Medical Devices: Evidence and Research, 2019, Volume 12, 89-100.	0.8	2
13	Grip control and motor coordination with implanted and surface electrodes while grasping with an osseointegrated prosthetic hand. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 49.	4.6	44
14	Direct bone conduction stimulation: Ipsilateral effect of different transducer attachments in active transcutaneous devices. Hearing Research, 2018, 361, 103-112.	2.0	11
15	An Alternative Myoelectric Pattern Recognition Approach for the Control of Hand Prostheses: A Case Study of Use in Daily Life by a Dysmelia Subject. IEEE Journal of Translational Engineering in Health and Medicine, 2018, 6, 1-12.	3.7	36
16	Biomechanical Characterisation of Bone-anchored Implant Systems for Amputation Limb Prostheses: A Systematic Review. Annals of Biomedical Engineering, 2018, 46, 377-391.	2.5	84
17	VEMP using a new low-frequency bone conduction transducer. Medical Devices: Evidence and Research, 2018, Volume 11, 301-312.	0.8	10
18	Touch and Hearing Mediate Osseoperception. Scientific Reports, 2017, 7, 45363.	3.3	22

#	Article	IF	CITATIONS
19	Embedded System for Prosthetic Control Using Implanted Neuromuscular Interfaces Accessed Via an Osseointegrated Implant. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11, 867-877.	4.0	73
20	Low-cost, open source bioelectric signal acquisition system., 2017,,.		4
21	Vibrotactile Thresholds on the Mastoid and Forehead Position of Deaf Patients Using Radioear B71 and B81. Ear and Hearing, 2017, 38, 714-723.	2.1	6
22	Real-time Classification of Non-Weight Bearing Lower-Limb Movements Using EMG to Facilitate Phantom Motor Execution: Engineering and Case Study Application on Phantom Limb Pain. Frontiers in Neurology, 2017, 8, 470.	2.4	25
23	Classification complexity in myoelectric pattern recognition. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 68.	4.6	20
24	Audiometric Comparison Between the First Patients With the Transcutaneous Bone Conduction Implant and Matched Percutaneous Bone Anchored Hearing Device Users. Otology and Neurotology, 2016, 37, 1381-1387.	1.3	19
25	Magnetic resonance imaging investigation of the bone conduction implant & mp; ndash; a pilot study at 1.5 Tesla. Medical Devices: Evidence and Research, 2015, 8, 413.	0.8	11
26	New developments in bone-conduction hearing implants: a review. Medical Devices: Evidence and Research, 2015, 8, 79.	0.8	143
27	Analog front-ends comparison in the way of a portable, low-power and low-cost EMG controller based on pattern recognition. , 2015, 2015, 2111-4.		18
28	The bone conduction implant: Clinical results of the first six patients. International Journal of Audiology, 2015, 54, 408-416.	1.7	30
29	Electro-acoustic performance of the new bone vibrator Radioear B81: A comparison with the conventional Radioear B71. International Journal of Audiology, 2015, 54, 334-340.	1.7	32
30	Technical design of a new bone conduction implant (BCI) system. International Journal of Audiology, 2015, 54, 736-744.	1.7	21
31	Study of the Feasible Size of a Bone Conduction Implant Transducer in the Temporal Bone. Otology and Neurotology, 2015, 36, 631-637.	1.3	13
32	Offline accuracy: A potentially misleading metric in myoelectric pattern recognition for prosthetic control., 2015, 2015, 1140-3.		71
33	Mitochondrial Genetic Diversity of Eurasian Red Squirrels (Sciurus vulgaris) from Denmark. Journal of Heredity, 2015, 106, 719-727.	2.4	6
34	Treatment of phantom limb pain (PLP) based on augmented reality and gaming controlled by myoelectric pattern recognition: a case study of a chronic PLP patient. Frontiers in Neuroscience, 2014, 8, 24.	2.8	127
35	An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs. Science Translational Medicine, 2014, 6, 257re6.	12.4	378
36	Bone conduction hearing sensitivity in normal-hearing subjects: Transcutaneous stimulation at BAHA vs BCI position. International Journal of Audiology, 2014, 53, 360-369.	1.7	34

3

#	Article	IF	CITATIONS
37	MRI Induced Torque and Demagnetization in Retention Magnets for a Bone Conduction Implant. IEEE Transactions on Biomedical Engineering, 2014, 61, 1887-1893.	4.2	19
38	Real-Time and Simultaneous Control of Artificial Limbs Based on Pattern Recognition Algorithms. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 756-764.	4.9	123
39	Evaluation of Bone Tissue Formation in a Flat Surface Attachment of a Bone Conduction Implant: A Pilot Study in a Sheep Model. Audiology and Neurotology Extra, 2014, 4, 62-76.	2.0	2
40	The Bone Conduction Implantâ€"First Implantation, Surgical and Audiologic Aspects. Otology and Neurotology, 2014, 35, 679-685.	1.3	32
41	Effect on signal-to-noise ratio of splitting the continuous contacts of cuff electrodes into smaller recording areas. Journal of NeuroEngineering and Rehabilitation, 2013, 10, 22.	4.6	19
42	BioPatRec: A modular research platform for the control of artificial limbs based on pattern recognition algorithms. Source Code for Biology and Medicine, 2013, 8, 11.	1.7	150
43	Estimation of bone conduction skull transmission by hearing thresholds and ear-canal sound pressure. Hearing Research, 2013, 299, 19-28.	2.0	55
44	Transmission of bone conducted sound $\hat{a}\in$ Correlation between hearing perception and cochlear vibration. Hearing Research, 2013, 306, 11-20.	2.0	79
45	A Vibration Investigation of a Flat Surface Contact to Skull Bone for Direct Bone Conduction Transmission in Sheep Skulls In Vivo. Otology and Neurotology, 2013, 34, 690-698.	1.3	9
46	Evaluation of classifier topologies for the real-time classification of simultaneous limb motions. , 2013, 2013, 6651-4.		9
47	Feedback Analysis in Percutaneous Bone-Conduction Device and Bone-Conduction Implant on a Dry Cranium. Otology and Neurotology, 2012, 33, 413-420.	1.3	15
48	On the viability of implantable electrodes for the natural control of artificial limbs: Review and discussion. BioMedical Engineering OnLine, 2012, 11, 33.	2.7	120
49	Analysis and Design of RF Power and Data Link Using Amplitude Modulation of Class-E for a Novel Bone Conduction Implant. IEEE Transactions on Biomedical Engineering, 2012, 59, 3050-3059.	4.2	22
50	A Novel Bone Conduction Implant - Analog Radio Frequency Data and Power Link Design. , 2012, , .		2
51	The Future of Bone Conduction Hearing Devices. Advances in Oto-Rhino-Laryngology, 2011, 71, 140-152.	1.6	15
52	Technology-Limited and Patient-Derived Versus Audibility-Derived Fittings in Bone-Anchored Hearing Aid Users: A Validation Study. Ear and Hearing, 2011, 32, 31-39.	2.1	15
53	Optimal position of a new bone conduction implant. Cochlear Implants International, 2011, 12, S136-S138.	1.2	9
54	A novel bone conduction implant (BCI): Engineering aspects and pre-clinical studies. International Journal of Audiology, 2010, 49, 203-215.	1.7	71

#	Article	IF	Citations
55	A comparison of three approaches to verifying aided Baha output. International Journal of Audiology, 2010, 49, 286-295.	1.7	16
56	Hearing one's own voice during phoneme vocalizationâ€"Transmission by air and bone conduction. Journal of the Acoustical Society of America, 2010, 128, 751-762.	1.1	55
57	Percutaneous Versus Transcutaneous Bone Conduction Implant System. Otology and Neurotology, 2008, 29, 1132-1139.	1.3	71
58	Examination of bone-conducted transmission from sound field excitation measured by thresholds, ear-canal sound pressure, and skull vibrations. Journal of the Acoustical Society of America, 2007, 121, 1576-1587.	1.1	44
59	TRANSCRANIAL TRANSMISSION OF BONE CONDUCTED SOUND MEASURED ACOUSTICALLY AND PSYCHOACOUSTICALLY., 2007, , .		1
60	Bilateral Boneâ€Anchored Hearing Aids (BAHAs): An Audiometric Evaluation. Laryngoscope, 2004, 114, 77-84.	2.0	78
61	The balanced electromagnetic separation transducer: A new bone conduction transducer. Journal of the Acoustical Society of America, 2003, 113, 818-825.	1.1	59
62	Original Article: Sound stimulation via bone conduction for tinnitus relief: a pilot study: Estimulación Sonora por vÃa ósea para mejorar el acúfeno: un estudio piloto. International Journal of Audiology, 2002, 41, 293-300.	1.7	22
63	Air versus bone conduction: an equal loudness investigation. Hearing Research, 2002, 167, 1-12.	2.0	42
64	Bone-anchored hearing aids. Otolaryngologic Clinics of North America, 2001, 34, 337-364.	1.1	145
65	Titanium in Audiology. Engineering Materials, 2001, , 909-928.	0.6	0
66	A bone-anchored hearing aid for patients with pure sensorineural hearing impairment: A pilot study. Scandinavian Audiology, 2000, 29, 175-185.	0.5	11
67	Vibration characteristics of bone conducted sound <i>in vitro</i> . Journal of the Acoustical Society of America, 2000, 107, 422-431.	1.1	125
68	Sensitivity to bone-conducted sound: excitation of the mastoid vs the teeth. Scandinavian Audiology, 1999, 28, 190-198.	0.5	39
69	A Miniaturized Artificial Mastoid Using a Skull Simulator. Scandinavian Audiology, 1998, 27, 67-76.	0.5	8
70	The Bone-Anchored Hearing Aid: Reference Quantities and Functional Gain. Ear and Hearing, 1997, 18, 34-41.	2.1	47
71	Linearity of sound transmission through the human skull <i>in</i> â€^ <i>vivo</i> . Journal of the Acoustical Society of America, 1996, 99, 2239-2243.	1.1	45
72	The Bone-Anchored Hearing Aid: Design Principles, Indications, and Long-Term Clinical Results. Otolaryngologic Clinics of North America, 1995, 28, 53-72.	1.1	160

#	Article	IF	CITATIONS
73	Force threshold for hearing by direct bone conduction. Journal of the Acoustical Society of America, 1995, 97, 1124-1129.	1.1	34
74	The Bone-Anchored Hearing Aid: Principal Design and Audiometric Results. Ear, Nose and Throat Journal, 1994, 73, 670-675.	0.8	37
75	Resonance frequencies of the human skull <i>in</i> i>â€^ <i>vivo</i> . Journal of the Acoustical Society of America, 1994, 95, 1474-1481.	1.1	96
76	Ten Years of Experience with the Swedish Bone-Anchored Hearing System. Annals of Otology, Rhinology and Laryngology, 1990, 99, 1-16.	1.1	37
77	Percutaneous Vs. Transcutaneous Transducers for Hearing by Direct Bone Conduction. Otolaryngology - Head and Neck Surgery, 1990, 102, 339-344.	1.9	43
78	Skull Simulator for Direct Bone Conduction Hearing Devices. Scandinavian Audiology, 1989, 18, 91-98.	0.5	65
79	A Speechâ€ŧoâ€Noise Ratio Test with the Boneâ€Anchored Hearing Aid: A Comparative Study. Otolaryngology - Head and Neck Surgery, 1986, 94, 421-426.	1.9	33
80	The mechanical point impedance of the human head, with and without skin penetration. Journal of the Acoustical Society of America, 1986, 80, 1065-1075.	1.1	66
81	Acceleration Levels at Hearing Threshold with Direct Bone Conduction Versus Conventional Bone Conduction. Acta Oto-Laryngologica, 1985, 100, 240-252.	0.9	57
82	The Bone-Anchored Hearing Aid: Principal Design and a Psychoacoustical Evaluation. Acta Oto-Laryngologica, 1985, 100, 229-239.	0.9	145
83	Hearing Thresholds with Direct Bone Conduction Versus Conventional Bone Conduction. Scandinavian Audiology, 1984, 13, 3-13.	0.5	136
84	The vestibular labyrinth is more robust than previously thoughtâ€"Lessons from surgical removal of intracochlear schwannoma. Hno, 0, , .	1.0	0