Alejandro Montoya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8863399/publications.pdf

Version: 2024-02-01

59 2,036 25 papers citations h-index

59 59 59 2439 all docs docs citations times ranked citing authors

44

g-index

#	Article	IF	CITATIONS
1	Increasing Lovastatin Production by Re-routing the Precursors Flow of Aspergillus terreus via Metabolic Engineering. Molecular Biotechnology, 2022, 64, 90-99.	1.3	8
2	Comparative Study of the Catalytic Oxidation of Hydrocarbons on Platinum and Palladium Wires and Nanoparticles. Energy & Samp; Fuels, 2022, 36, 2044-2057.	2.5	4
3	Substituted Aromatic Aldehyde Decomposition under Hydrothermal Conditions. Energy &	2.5	1
4	Mechanistic insight into catalytic carbon dioxide hydrogenation to formic acid over Pt-doped boron nitride nanosheets. Molecular Catalysis, 2021, 510, 111675.	1.0	7
5	Hydrothermal Decomposition of Glucose in the Presence of Ammonium. Industrial & Engineering Chemistry Research, 2021, 60, 10129-10138.	1.8	4
6	Selective heterogeneous hydrodeoxygenation of acetophenone over monometallic and bimetallic Pt–Co catalyst. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200346.	1.6	0
7	Biomass-derived nanocarbon materials for biological applications: challenges and prospects. Journal of Materials Chemistry B, 2020, 8, 9668-9678.	2.9	16
8	Graphene oxide laminates intercalated with 2D covalent-organic frameworks as a robust nanofiltration membrane. Journal of Materials Chemistry A, 2020, 8, 9713-9725.	5.2	46
9	Electrochemical oxidation of nitrogen-rich post-hydrothermal liquefaction wastewater. Algal Research, 2020, 48, 101919.	2.4	9
10	Binding and activation of ethylene on tungsten carbide and platinum surfaces. Physical Chemistry Chemical Physics, 2019, 21, 17332-17342.	1.3	9
11	From ethyl biodiesel to biolubricants: Options for an Indian mustard integrated biorefinery toward a green and circular economy. Industrial Crops and Products, 2019, 137, 597-614.	2.5	30
12	Improved lovastatin production by inhibiting (+)-geodin biosynthesis in Aspergillus terreus. New Biotechnology, 2019, 52, 19-24.	2.4	12
13	Atomic order, electronic structure and thermodynamic stability of nickel aluminate. Physical Chemistry Chemical Physics, 2019, 21, 25952-25961.	1.3	10
14	Ultrafast hydrothermal assembly of nanocarbon microfibers in near-critical water for 3D microsupercapacitors. Carbon, 2018, 132, 698-708.	5.4	26
15	Mineral sequestration of CO 2 using saprolite mine tailings in the presence of alkaline industrial wastes. Journal of Cleaner Production, 2018, 188, 686-697.	4.6	20
16	<i>In situ</i> synchrotron XRD analysis of the kinetics of spodumene phase transitions. Physical Chemistry Chemical Physics, 2018, 20, 10753-10761.	1.3	18
17	Reaction Analysis of Diaryl Ether Decomposition under Hydrothermal Conditions. Industrial & Samp; Engineering Chemistry Research, 2018, 57, 2014-2022.	1.8	6
18	Acid-Catalyzed Ring Opening of Furan in Aqueous Solution. Energy & Energy & 2018, 32, 4139-4148.	2.5	17

#	Article	IF	CITATIONS
19	Overexpression of acetyl-CoA carboxylase in Aspergillus terreus to increase lovastatin production. New Biotechnology, 2018, 44, 64-71.	2.4	36
20	The influence of a chloride-based supporting electrolyte on electrodeposited zinc in zinc/bromine flow batteries. Electrochimica Acta, 2018, 292, 903-913.	2.6	9
21	The effect of surface coverage on N ₂ , NO and N ₂ O formation over Pt(111). Physical Chemistry Chemical Physics, 2018, 20, 25314-25323.	1.3	13
22	Sustainable transformation of fly ash industrial waste into a construction cement blend via CO 2 carbonation. Journal of Cleaner Production, 2017, 156, 660-669.	4.6	62
23	Growth and lovastatin production by Aspergillus terreus under different carbohyrates as carbon sources. Biocatalysis and Agricultural Biotechnology, 2017, 10, 379-385.	1.5	11
24	Mechanistic Insights and Kinetic Modeling of Cellobiose Decomposition in Hot Compressed Water. Energy & Samp; Fuels, 2017, 31, 2203-2216.	2.5	11
25	Unravelling Some of the Key Transformations in the Hydrothermal Liquefaction of Lignin. ChemSusChem, 2017, 10, 2140-2144.	3.6	26
26	Vertical garden for treating greywater. AIP Conference Proceedings, 2017, , .	0.3	2
27	N2O formation and dissociation during ammonia combustion: A combined DFT and experimental study. Proceedings of the Combustion Institute, 2017, 36, 637-644.	2.4	5
28	The catalytic oxidation of NH3 on Co3O4(110): A theoretical study. Proceedings of the Combustion Institute, 2017, 36, 4365-4373.	2.4	15
29	Continuous hydrothermal liquefaction of macroalgae in the presence of organic co-solvents. Algal Research, 2016, 17, 185-195.	2.4	53
30	Effect of the Local Atomic Ordering on the Stability of \hat{I}^2 -Spodumene. Inorganic Chemistry, 2016, 55, 6426-6434.	1.9	9
31	The Interactions Between Chlorides and Zn(001) Surfaces in Zinc/Bromine Flow Battery Electrolytes. ECS Meeting Abstracts, 2016, , .	0.0	O
32	Lovastatin and (+)â€geodin production by <i>Aspergillus terreus</i> from crude glycerol. Engineering in Life Sciences, 2015, 15, 220-228.	2.0	24
33	Molecular modelling of the decomposition of NH3 over CoO(100). Materials Chemistry and Physics, 2015, 156, 141-149.	2.0	8
34	Kinetic Insights into the Hydrothermal Decomposition of Dihydroxyacetone: A Combined Experimental and Modeling Study. Industrial & Engineering Chemistry Research, 2015, 54, 8437-8447.	1.8	11
35	Two-stage hydrothermal liquefaction of a high-protein microalga. Algal Research, 2015, 8, 15-22.	2.4	140
36	Energy profiles of hydrogen migration in the early stages of lizardite dehydroxylation. Computational Materials Science, 2015, 98, 435-445.	1.4	0

#	Article	IF	CITATIONS
37	Pre- and post-harvest treatment of macroalgae to improve the quality of feedstock for hydrothermal liquefaction. Algal Research, 2014, 6, 22-31.	2.4	41
38	The role of oxygen during the catalytic oxidation of ammonia on Co 3 O 4 (1 0 0). Applied Surface Science, 2014, 316, 355-365.	3.1	18
39	Pilot plant testing of continuous hydrothermal liquefaction of microalgae. Algal Research, 2013, 2, 268-277.	2.4	226
40	Insight into oxygen stability and vacancy formation on Co3O4 model slabs. Computational Materials Science, 2013, 72, 15-25.	1.4	29
41	Molecular Dynamics Study of Acid-Catalyzed Hydrolysis of Dimethyl Ether in Aqueous Solution. Journal of Physical Chemistry B, 2011, 115, 8199-8206.	1.2	9
42	Local Site Selectivity and Conformational Structures in the Glycosidic Bond Scission of Cellobiose. Journal of Physical Chemistry B, 2011, 115, 10682-10691.	1.2	29
43	Periodic density functional study of Co3O4 surfaces. Chemical Physics Letters, 2011, 502, 63-68.	1.2	72
44	Conformational and Thermodynamic Properties of Gaseous Levulinic Acid. Journal of Physical Chemistry A, 2010, 114, 12323-12329.	1.1	19
45	DFT Analysis of the Reaction Paths of Formaldehyde Decomposition on Silver. Journal of Physical Chemistry A, 2009, 113, 8125-8131.	1.1	28
46	Methanol and Methoxide Decomposition on Silver. Journal of Physical Chemistry C, 2007, 111, 9867-9876.	1.5	29
47	Reactions of Hydroxyl on the Topmost Layer of Ag(111):  A Density Functional Theory Study. Journal of Physical Chemistry C, 2007, 111, 1333-1341.	1.5	7
48	Reaction of Hydrogen with Ag(111):  Binding States, Minimum Energy Paths, and Kinetics. Journal of Physical Chemistry B, 2006, 110, 17145-17154.	1.2	51
49	Gas-Phase Interaction of H2S with O2:  A Kinetic and Quantum Chemistry Study of the Potential Energy Surface. Journal of Physical Chemistry A, 2005, 109, 1057-1062.	1.1	35
50	A DFT Study of Interaction of Carbon Monoxide with Carbonaceous Materials. Journal of Physical Chemistry B, 2004, 108, 1003-1008.	1.2	74
51	CO2 adsorption on carbonaceous surfaces: a combined experimental and theoretical study. Carbon, 2003, 41, 29-39.	5.4	111
52	First-Principles Kinetics of CO Desorption from Oxygen Species on Carbonaceous Surface. Journal of Physical Chemistry A, 2002, 106, 4236-4239.	1.1	99
53	Formation of CO precursors during char gasification with O2, CO2 and H2O. Fuel Processing Technology, 2002, 77-78, 125-130.	3.7	62
54	Kinetics of nitric oxide desorption from carbonaceous surfaces. Fuel Processing Technology, 2002, 77-78, 453-458.	3.7	19

#	Article	IF	CITATIONS
55	Adsorption on carbonaceous surfaces: cost-effective computational strategies for quantum chemistry studies of aromatic systems. Carbon, 2002, 40, 1863-1872.	5.4	28
56	CO Desorption from Oxygen Species on Carbonaceous Surface:Â 1. Effects of the Local Structure of the Active Site and the Surface Coverage. Journal of Physical Chemistry A, 2001, 105, 6757-6764.	1.1	120
57	Spin Contamination in Hartreeâ°Fock and Density Functional Theory Wavefunctions in Modeling of Adsorption on Graphite. Journal of Physical Chemistry A, 2000, 104, 6108-6110.	1.1	150
58	Application of Density Functional Theory to the Study of the Reaction of NO with Char-Bound Nitrogen during Combustion. Journal of Physical Chemistry A, 2000, 104, 8409-8417.	1.1	74
59	CO2 strong chemisorption as an estimate of coal char gasification reactivity. Fuel, 1999, 78, 971-977.	3.4	28