
Alan Kuo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8863134/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature, 2008, 456, 239-244.	13.7	1,458
2	The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes. Science, 2012, 336, 1715-1719.	6.0	1,424
3	MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Research, 2014, 42, D699-D704.	6.5	1,187
4	Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nature Genetics, 2015, 47, 410-415.	9.4	870
5	Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20117-20122.	3.3	717
6	Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature, 2013, 499, 209-213.	13.7	448
7	The Genome of Nectria haematococca: Contribution of Supernumerary Chromosomes to Gene Expansion. PLoS Genetics, 2009, 5, e1000618.	1.5	402
8	Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature, 2012, 492, 59-65.	13.7	377
9	Widespread adenine N6-methylation of active genes in fungi. Nature Genetics, 2017, 49, 964-968.	9.4	292
10	Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nature Communications, 2020, 11, 5125.	5.8	258
11	Niche of harmful alga <i>Aureococcus anophagefferens</i> revealed through ecogenomics. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4352-4357.	3.3	256
12	Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytologist, 2018, 217, 1213-1229.	3.5	185
13	A parts list for fungal cellulosomes revealed by comparative genomics. Nature Microbiology, 2017, 2, 17087.	5.9	183
14	Evolution and comparative genomics of the most common Trichoderma species. BMC Genomics, 2019, 20, 485.	1.2	181
15	Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication. Current Biology, 2016, 26, 1577-1584.	1.8	175
16	Investigation of inter- and intraspecies variation through genome sequencing of Aspergillus section Nigri. Nature Genetics, 2018, 50, 1688-1695.	9.4	160
17	Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum. Nature Communications, 2016, 7, 12662.	5.8	156
18	Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts. PLoS Genetics, 2018, 14, e1007322.	1.5	143

Alan Kuo

#	Article	IF	CITATIONS
19	Comparative genomics provides insights into the lifestyle and reveals functional heterogeneity of dark septate endophytic fungi. Scientific Reports, 2018, 8, 6321.	1.6	138
20	Comparative genomics of <i>Rhizophagus irregularis</i> , <i> R.Âcerebriforme</i> , <i> R.Âdiaphanus</i> and <i>Gigaspora rosea</i> highlights specific genetic features in Glomeromycotina. New Phytologist, 2019, 222, 1584-1598.	3.5	133
21	A comparative genomics study of 23 Aspergillus species from section Flavi. Nature Communications, 2020, 11, 1106.	5.8	125
22	Genetic isolation between two recently diverged populations of a symbiotic fungus. Molecular Ecology, 2015, 24, 2747-2758.	2.0	100
23	The lichen symbiosis re-viewed through the genomes of Cladonia grayi and its algal partner Asterochloris glomerata. BMC Genomics, 2019, 20, 605.	1.2	98
24	PhycoCosm, a comparative algal genomics resource. Nucleic Acids Research, 2021, 49, D1004-D1011.	6.5	98
25	Pezizomycetes genomes reveal the molecular basis of ectomycorrhizal truffle lifestyle. Nature Ecology and Evolution, 2018, 2, 1956-1965.	3.4	95
26	The Mutualist <i>Laccaria bicolor</i> Expresses a Core Gene Regulon During the Colonization of Diverse Host Plants and a Variable Regulon to Counteract Host-Specific Defenses. Molecular Plant-Microbe Interactions, 2015, 28, 261-273.	1.4	82
27	Genomic Analysis Enlightens Agaricales Lifestyle Evolution and Increasing Peroxidase Diversity. Molecular Biology and Evolution, 2021, 38, 1428-1446.	3.5	72
28	Gene family expansions and transcriptome signatures uncover fungal adaptations to wood decay. Environmental Microbiology, 2021, 23, 5716-5732.	1.8	44
29	Comparative genomics reveals dynamic genome evolution in host specialist ectomycorrhizal fungi. New Phytologist, 2021, 230, 774-792.	3.5	37
30	Phylogenomic Analyses of Non-Dikarya Fungi Supports Horizontal Gene Transfer Driving Diversification of Secondary Metabolism in the Amphibian Gastrointestinal Symbiont, <i>Basidiobolus</i> . G3: Genes, Genomes, Genetics, 2020, 10, 3417-3433.	0.8	27
31	Fungal Genomics. Advances in Botanical Research, 2014, , 1-52.	0.5	25
32	Ecological generalism drives hyperdiversity of secondary metabolite gene clusters in xylarialean endophytes. New Phytologist, 2022, 233, 1317-1330.	3.5	23
33	Evolutionary transition to the ectomycorrhizal habit in the genomes of a hyperdiverse lineage of mushroomâ€forming fungi. New Phytologist, 2022, 233, 2294-2309.	3.5	21
34	Desert truffle genomes reveal their reproductive modes and new insights into plant–fungal interaction and ectendomycorrhizal lifestyle. New Phytologist, 2021, 229, 2917-2932.	3.5	19
35	Evolutionary innovations through gain and loss of genes in the ectomycorrhizal Boletales. New Phytologist, 2022, 233, 1383-1400.	3.5	19
36	Comparative Genomics of the Ectomycorrhizal Sister Species <i>Rhizopogon vinicolor</i> and <i>Rhizopogon vesiculosus</i> (Basidiomycota: Boletales) Reveals a Divergence of the Mating Type <i>B</i> Locus. G3: Genes, Genomes, Genetics, 2017, 7, 1775-1789.	0.8	17

Alan Kuo

#	Article	IF	CITATIONS
37	Comparative genomics reveals a dynamic genome evolution in the ectomycorrhizal milk ap (<i>Lactarius</i>) mushrooms. New Phytologist, 2022, 235, 306-319.	3.5	14
38	Diploid genomic architecture of Nitzschia inconspicua, an elite biomass production diatom. Scientific Reports, 2021, 11, 15592.	1.6	12
39	Salinity tolerance mechanisms of an Arctic Pelagophyte using comparative transcriptomic and gene expression analysis. Communications Biology, 2022, 5, .	2.0	7
40	Annotated Genome Sequence of the High-Biomass-Producing Yellow-Green Alga Tribonema minus. Microbiology Resource Announcements, 2021, 10, e0032721.	0.3	4
41	Heterospecific Neighbor Plants Impact Root Microbiome Diversity and Molecular Function of Root Fungi. Frontiers in Microbiology, 2021, 12, 680267.	1.5	3