Esmeralda Blaney Davidson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8862973/publications.pdf

Version: 2024-02-01

218677 189892 2,701 77 26 50 citations h-index g-index papers 77 77 77 3324 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	TGF-Î ² and osteoarthritis. Osteoarthritis and Cartilage, 2007, 15, 597-604.	1.3	337
2	Increase in ALK1/ALK5 Ratio as a Cause for Elevated MMP-13 Expression in Osteoarthritis in Humans and Mice. Journal of Immunology, 2009, 182, 7937-7945.	0.8	251
3	TGF-beta signaling in chondrocyte terminal differentiation and osteoarthritis. Osteoarthritis and Cartilage, 2009, 17, 1539-1545.	1.3	239
4	Reduced transforming growth factor-beta signaling in cartilage of old mice: role in impaired repair capacity. Arthritis Research and Therapy, 2005, 7, R1338.	3. 5	179
5	Smad Signaling Determines Chondrogenic Differentiation of Bone-Marrow-Derived Mesenchymal Stem Cells: Inhibition of Smad1/5/8P Prevents Terminal Differentiation and Calcification. Tissue Engineering - Part A, 2011, 17, 1157-1167.	3.1	149
6	Age-dependent alteration of TGF- \hat{l}^2 signalling in osteoarthritis. Cell and Tissue Research, 2012, 347, 257-265.	2.9	119
7	A role for age-related changes in $TGF\hat{I}^2$ signaling in aberrant chondrocyte differentiation and osteoarthritis. Arthritis Research and Therapy, 2010, 12, 201.	3 . 5	106
8	Bone Morphogenetic Proteins and articular cartilage. Osteoarthritis and Cartilage, 2010, 18, 735-741.	1.3	99
9	Elevated extracellular matrix production and degradation upon bone morphogenetic protein-2 (BMP-2) stimulation point toward a role for BMP-2 in cartilage repair and remodeling. Arthritis Research and Therapy, 2007, 9, R102.	3.5	93
10	Unravelling osteoarthritis-related synovial fibrosis: a step closer to solving joint stiffness. Rheumatology, 2015, 54, 1954-1963.	1.9	83
11	TGF beta-induced cartilage repair is maintained but fibrosis is blocked in the presence of Smad7. Arthritis Research and Therapy, 2006, 8, R65.	3.5	81
12	Catabolic Factors and Osteoarthritis-Conditioned Medium Inhibit Chondrogenesis of Human Mesenchymal Stem Cells. Tissue Engineering - Part A, 2012, 18, 45-54.	3.1	81
13	A roadmap to target interleukin-6 in osteoarthritis. Rheumatology, 2020, 59, 2681-2694.	1.9	72
14	TGF- \hat{l}^2 is a potent inducer of Nerve Growth Factor in articular cartilage via the ALK5-Smad2/3 pathway. Potential role in OA related pain?. Osteoarthritis and Cartilage, 2015, 23, 478-486.	1.3	66
15	Osteoarthritis-related fibrosis is associated with both elevated pyridinoline cross-link formation and lysyl hydroxylase 2b expression. Osteoarthritis and Cartilage, 2013, 21, 157-164.	1.3	64
16	Canonical Wnt signaling skews TGF- \hat{l}^2 signaling in chondrocytes towards signaling via ALK1 and Smad 1/5/8. Cellular Signalling, 2014, 26, 951-958.	3.6	64
17	TGF-ß induces Lysyl hydroxylase 2b in human synovial osteoarthritic fibroblasts through ALK5 signaling. Cell and Tissue Research, 2014, 355, 163-171.	2.9	57
18	Physiological and excessive mechanical compression of articular cartilage activates Smad2/3P signaling. Osteoarthritis and Cartilage, 2014, 22, 1018-1025.	1.3	49

#	Article	IF	Citations
19	TGF \hat{l}^2 1-induced SMAD2/3 and SMAD1/5 phosphorylation are both ALK5-kinase-dependent in primary chondrocytes and mediated by TAK1 kinase activity. Arthritis Research and Therapy, 2017, 19, 112.	3.5	49
20	Transcriptional profiling distinguishes inner and outer annulus fibrosus from nucleus pulposus in the bovine intervertebral disc. European Spine Journal, 2017, 26, 2053-2062.	2.2	48
21	Ageing is associated with reduction of mechanically-induced activation of Smad2/3P signaling in articular cartilage. Osteoarthritis and Cartilage, 2016, 24, 146-157.	1.3	44
22	TGF- \hat{l}^2 dampens IL-6 signaling in articular chondrocytes by decreasing IL-6 receptor expression. Osteoarthritis and Cartilage, 2019, 27, 1197-1207.	1.3	42
23	Milk extracellular vesicles accelerate osteoblastogenesis but impair bone matrix formation. Journal of Nutritional Biochemistry, 2016, 30, 74-84.	4.2	40
24	Osteoarthritis year in review 2016: biology. Osteoarthritis and Cartilage, 2017, 25, 175-180.	1.3	39
25	SMAD3 and SMAD4 have a more dominant role than SMAD2 in TGF \hat{l}^2 -induced chondrogenic differentiation of bone marrow-derived mesenchymal stem cells. Scientific Reports, 2017, 7, 43164.	3.3	39
26	Activin Receptor-Like Kinase Receptors ALK5 and ALK1 Are Both Required for TGFÎ ² -Induced Chondrogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells. PLoS ONE, 2015, 10, e0146124.	2.5	36
27	Acute Acetaminophen Intoxication Leads to Hepatic Iron Loading by Decreased Hepcidin Synthesis. Toxicological Sciences, 2012, 129, 225-233.	3.1	17
28	The level of synovial AXL expression determines the outcome of inflammatory arthritis, possibly depending on the upstream role of TGF- \hat{l}^21 . Rheumatology, 2019, 58, 536-546.	1.9	17
29	Interleukin 1 \hat{I}^2 -induced SMAD2/3 linker modifications are TAK1 dependent and delay TGF \hat{I}^2 signaling in primary human mesenchymal stem cells. Cellular Signalling, 2017, 40, 190-199.	3.6	14
30	The RNA-Binding Protein Human Antigen R Controls Global Changes in Gene Expression during Schwann Cell Development. Journal of Neuroscience, 2012, 32, 4944-4958.	3.6	12
31	IL-37 diminishes proteoglycan loss in human OA cartilage: donor-specific link between IL-37 and MMP-3. Osteoarthritis and Cartilage, 2019, 27, 148-157.	1.3	12
32	Osteoarthritis-Related Inflammation Blocks TGF-β's Protective Effect on Chondrocyte Hypertrophy via (de)Phosphorylation of the SMAD2/3 Linker Region. International Journal of Molecular Sciences, 2021, 22, 8124.	4.1	12
33	How to build an inducible cartilage-specific transgenic mouse. Arthritis Research and Therapy, 2014, 16, 210.	3.5	10
34	Identification of Transcription Factors Responsible for a Transforming Growth Factor- \hat{l}^2 -Driven Hypertrophy-like Phenotype in Human Osteoarthritic Chondrocytes. Cells, 2022, 11, 1232.	4.1	9
35	Cross-talk between bone morphogenetic proteins and inflammatory pathways. Arthritis Research and Therapy, 2015, 17, 326.	3.5	8
36	Protocol of the Healthy Brain Study: An accessible resource for understanding the human brain and how it dynamically and individually operates in its bio-social context. PLoS ONE, 2021, 16, e0260952.	2.5	8

#	Article	IF	CITATIONS
37	IL37 dampens the IL1 \hat{I}^2 -induced catabolic status of human OA chondrocytes. Rheumatology, 2016, 56, kew411.	1.9	7
38	The alarmins S100A8 and S100A9 mediate acute pain in experimental synovitis. Arthritis Research and Therapy, 2020, 22, 199.	3.5	7
39	Increased IL-6 receptor expression and signaling in ageing cartilage can be explained by loss of TGF-Î ² -mediated IL-6 receptor suppression. Osteoarthritis and Cartilage, 2021, 29, 773-782.	1.3	7
40	Treatment of collagenase-induced osteoarthritis with a viral vector encoding TSG-6 results in ectopic bone formation. PeerJ, 2018, 6, e4771.	2.0	7
41	Identification of $TGF\hat{l}^2$ -related genes regulated in murine osteoarthritis and chondrocyte hypertrophy by comparison of multiple microarray datasets. Bone, 2018, 116, 67-77.	2.9	6
42	Activin and Nodal Are Not Suitable Alternatives to $TGF\hat{l}^2$ for Chondrogenic Differentiation of Mesenchymal Stem Cells. Cartilage, 2017, 8, 432-438.	2.7	5
43	TGF-beta blocks chondrocyte hypertrophy and maintains cell viability in cultured cartilage explants but does not protect against proteoglycan loss. Osteoarthritis and Cartilage, 2015, 23, A137-A138.	1.3	4
44	Innate Immunity at the Core of Sex Differences in Osteoarthritic Pain?. Frontiers in Pharmacology, 2022, 13, .	3.5	4
45	WISP1 aggravates osteoarthritis by modulation of TGF-beta signaling and positive regulation of canonical Wnt signaling. Osteoarthritis and Cartilage, 2015, 23, A44-A45.	1.3	3
46	Inducible chondrocyte-specific overexpression of BMP2 in young mice results in severe aggravation of osteophyte formation in experimental OA without altering cartilage damage. Osteoarthritis and Cartilage, 2013, 21, S67.	1.3	2
47	Synovial Wnt and WISP1 expression induces cartilage damage by skewing of TGF-beta signaling via the canonical Wnt signaling pathway. Osteoarthritis and Cartilage, 2013, 21, S54.	1.3	1
48	WNT and WISP1 expression in the synovium induces production of cartilage-degrading metalloproteinases by synovial cells. Osteoarthritis and Cartilage, 2014, 22, S447-S448.	1.3	1
49	A4.6â€TGF-β is a potent inducer of nerve growth factor in articular cartilage via the ALK5-SMAD2/3 pathway. Potential role in OA related pain?. Annals of the Rheumatic Diseases, 2015, 74, A38.2-A38.	0.9	1
50	Activin receptor-like kinase ALK5 and ALK1 are both required for $TGF\hat{1}^2$ -initiated chondrogenic differentiation of mesenchymal stem cells. Osteoarthritis and Cartilage, 2015, 23, A79.	1.3	1
51	055 SYNOVIAL EXPRESSION OF CANONICALWNT INDUCES CHONDROCYTE PHENOTYPE CHANGE AND OA-LIKE CARTILAGE DAMAGE. Osteoarthritis and Cartilage, 2010, 18, S32-S33.	1.3	O
52	73 SYNOVIAL OVEREXPRESSION OF WNTS AND WISP1 LEADS TO OA-LIKE CARTILAGE DAMAGE AND CHONDROCYTE PHENOTYPE CHANGE BY SKEWED TGF-BETA SIGNALING. Osteoarthritis and Cartilage, 2011, 19, S39.	1.3	0
53	Deleterious interaction between BMP2 and TGF-beta signaling in articular chondrocytes: harmful role for BMP2 in OA?. Osteoarthritis and Cartilage, 2012, 20, S138.	1.3	O
54	Synovial Wnt AND WISP1 expression induces cartilage damage by skewing of TGF-beta signaling and reduction of the anti-hypertrophic factor Sox9. Osteoarthritis and Cartilage, 2012, 20, S25.	1.3	0

#	Article	IF	CITATIONS
55	Gene expression analysis of OA synovium reveals elevation of TGF-ß responsive genes in OA-related fibrosis. Osteoarthritis and Cartilage, 2013, 21, S285-S286.	1.3	O
56	AB0120â€Elevated LYSYL hydroxylase 2B expression and pyridinoline cross-link formation in collagenase-induced OA; the cause of OA-related fibrosis?. Annals of the Rheumatic Diseases, 2013, 71, 644.10-644.	0.9	0
57	Elevated levels of BMP2 compensate for loss of TGF-beta on proteoglycan level in articular cartilage during experimental osteoarthritis. Osteoarthritis and Cartilage, 2014, 22, S342.	1.3	0
58	$TGF\hat{l}^2$ modulates its own signaling in chondrogenic cells by inducing ALK5 and dampening ALK1. Osteoarthritis and Cartilage, 2014, 22, S440-S441.	1.3	0
59	BMP2 requires TGF-beta to induce osteophytes during experimental OA. Osteoarthritis and Cartilage, 2014, 22, S16-S17.	1.3	0
60	A role for TGF- \hat{l}^2 in osteoarthritis-related pain?. International Journal of Clinical Rheumatology, 2015, 10, 309-311.	0.3	0
61	TGFÎ 2 , Activin A and nodal activate SMAD2/3 signaling in mesenchymal stem cells, but only TGFÎ 2 initiates chondrogenic differentiation. Osteoarthritis and Cartilage, 2015, 23, A381.	1.3	0
62	TGF- \hat{l}^2 is a potent inducer of nerve growth factor in articular cartilage via the ALK5-Smad2/3 pathway. potential role in OA related pain?. Osteoarthritis and Cartilage, 2015, 23, A62.	1.3	0
63	Inflammatory factors do not enable BMP2-induced osteophyte formation. Osteoarthritis and Cartilage, 2016, 24, S396.	1.3	0
64	IL37 suppresses IL- $1\hat{1}^2$ -induced pro-inflammatory cytokine and catabolic enzyme production in primary human oa chondrocytes: protection against cartilage degradation. Osteoarthritis and Cartilage, 2016, 24, S336-S337.	1.3	0
65	Year in review: osteoarthritis biology. Osteoarthritis and Cartilage, 2016, 24, S6.	1.3	0
66	SMAD3 and smad4 have a more dominant role than smad2 in chondrogenic induction of mesenchymal stem cells. Osteoarthritis and Cartilage, 2017, 25, S166-S167.	1.3	0
67	Identification of TGFÎ ² -related genes regulated in murine osteoarthritis and chondrocyte hypertrophy by comparing multiple microarray datasets. Osteoarthritis and Cartilage, 2017, 25, S211-S212.	1.3	0
68	Inflammation induced SMAD2/3 linker modifications alter $TGF\hat{l}^2$ signaling dynamics via TAK1. Osteoarthritis and Cartilage, 2017, 25, S163-S164.	1.3	0
69	04.18â€Bmp2-induced osteophyte formation is facilitated by tgfl² but not by inflammatory factors. , 2017, , .		0
70	02.26â€Increased expression of s100a9 regulates pain response during experimentally induced acute synovitis. , 2017, , .		0
71	O012 Joint-specific synovial TGF-Β1-induced AXL expression determines the outcome of inflammatory arthritis between ankle and knee joints. , 2018, , .		0
72	Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells with TGF-BETA, BMP2, GDF5 or combinations thereof does not result in a nucleus pulposus cell phenotype. Osteoarthritis and Cartilage, 2018, 26, S420-S421.	1.3	0

#	Article	IF	CITATIONS
73	S100A9 induces nociceptive pain but is not involved in allodynia in acute experimental synovitis. Osteoarthritis and Cartilage, 2019, 27, S75.	1.3	O
74	IL37 ameliorates experimental murine osteoarthritis. Osteoarthritis and Cartilage, 2019, 27, S483-S484.	1.3	0
75	P151â€Nociceptive pain in acute experimental synovitis is partly mediated by the alarmin S100A9. , 2019, , .		O
76	FRIO526 IL37 AMELIORATES EXPERIMENTAL MURINE OSTEOARTHRITIS. , 2019, , .		0
77	OP0225â€S100a9 mediates acute nociceptive pain in experimental synovitis. , 2018, , .		0