Pengmin Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8862964/publications.pdf

Version: 2024-02-01

249298 223390 2,492 48 26 49 h-index citations g-index papers 49 49 49 2909 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The apple FERONIA receptorâ€like kinase MdMRLK2 negatively regulates Valsa canker resistance by suppressing defence responses and hypersensitive reaction. Molecular Plant Pathology, 2022, 23, 1170-1186.	2.0	12
2	Kaempferol inhibits the growth of <i>Helicobacter pylori</i> in a manner distinct from antibiotics. Journal of Food Biochemistry, 2022, 46, e14210.	1.2	3
3	Visible light regulates anthocyanin synthesis via malate dehydrogenases and the ethylene signaling pathway in plum (<scp><i>Prunus salicina</i></scp> L.). Physiologia Plantarum, 2021, 172, 1739-1749.	2.6	5
4	Relationships between Structure and Antioxidant Capacity and Activity of Glycosylated Flavonols. Foods, 2021, 10, 849.	1.9	27
5	Nighttime Temperatures and Sunlight Intensities Interact to Influence Anthocyanin Biosynthesis and Photooxidative Sunburn in "Fuji―Apple. Frontiers in Plant Science, 2021, 12, 694954.	1.7	7
6	Competition between anthocyanin and kaempferol glycosides biosynthesis affects pollen tube growth and seed set of Malus. Horticulture Research, 2021, 8, 173.	2.9	24
7	Linkage map and QTL mapping of red flesh locus in apple using a R1R1 × R6R6 population. Horticultural Plant Journal, 2021, 7, 393-400.	2.3	13
8	Inhibitory properties of polyphenols in Malus "Winter Red―crabapple fruit on αâ€glucosidase and αâ€amylase using improved methods. Journal of Food Biochemistry, 2021, 45, e13942.	1.2	4
9	Biosynthesis of the Dihydrochalcone Sweetener Trilobatin Requires <i>Phloretin Glycosyltransferase2</i> . Plant Physiology, 2020, 184, 738-752.	2.3	15
10	Dihydrochalcones in <i>Malus </i> ii> inhibit bacterial growth by reducing cell membrane integrity. Food and Function, 2020, 11, 6517-6527.	2.1	13
11	High-efficient utilization and uptake of N contribute to higher NUE of †Qinguan†apple under drought and N-deficient conditions compared with †Honeycrispâ€. Tree Physiology, 2019, 39, 1880-1895.	1.4	24
12	MdUGT88F1-Mediated Phloridzin Biosynthesis Regulates Apple Development and <i>Valsa</i> Canker Resistance. Plant Physiology, 2019, 180, 2290-2305.	2.3	82
13	Differential Regulation of Anthocyanin Synthesis in Apple Peel under Different Sunlight Intensities. International Journal of Molecular Sciences, 2019, 20, 6060.	1.8	36
14	PbGA2ox8 induces vascular-related anthocyanin accumulation and contributes to red stripe formation on pear fruit. Horticulture Research, 2019, 6, 137.	2.9	30
15	Structure-antioxidant capacity relationship of dihydrochalcone compounds in Malus. Food Chemistry, 2019, 275, 354-360.	4.2	36
16	Phenolic compounds as biochemical markers of senescence in woody ornamental flowers of Malus crabapple. Horticulture Environment and Biotechnology, 2018, 59, 1-10.	0.7	13
17	Sugar metabolism and accumulation in the fruit of transgenic apple trees with decreased sorbitol synthesis. Horticulture Research, 2018, 5, 60.	2.9	112
18	Characterization of quercetin and its glycoside derivatives in Malus germplasm. Horticulture Environment and Biotechnology, 2018, 59, 909-917.	0.7	5

#	Article	IF	CITATIONS
19	Genome-Wide Identification and Analysis of Apple NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER Family (NPF) Genes Reveals MdNPF6.5 Confers High Capacity for Nitrogen Uptake under Low-Nitrogen Conditions. International Journal of Molecular Sciences, 2018, 19, 2761.	1.8	34
20	Extraction, identification, and antioxidant and anticancer tests of seven dihydrochalcones from Malus â€~Red Splendor' fruit. Food Chemistry, 2017, 231, 324-331.	4.2	52
21	Genome-wide identification of glycosyltransferases converting phloretin to phloridzin in Malus species. Plant Science, 2017, 265, 131-145.	1.7	53
22	Characterization of phenolic compounds and active anthocyanin degradation in crabapple (Malus) Tj ETQq0 0 0 rg	BT_/Overlo	ock 10 Tf 50
23	Anthocyanin concentration depends on the counterbalance between its synthesis and degradation in plum fruit at high temperature. Scientific Reports, 2017, 7, 7684.	1.6	65
24	Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynthesis Research, 2017, 132, 13-66.	1.6	419
25	High Temperature Induced Anthocyanin Inhibition and Active Degradation in Malus profusion. Frontiers in Plant Science, 2017, 8, 1401.	1.7	31
26	Selection of reliable reference genes for quantitative real-time PCR analysis in plum (Prunus salicina) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf
27	Effects of relative air humidity on the phenolic compounds contents and coloration in the â€~Fuji' apple (Malus domestica Borkh.) peel. Scientia Horticulturae, 2016, 201, 18-23.	1.7	15
28	Two MYB transcription factors regulate flavonoid biosynthesis in pear fruit (<i>Pyrus) Tj ETQq0 0 0 rgBT /Overlock</i>	10 Tf 50 3 2.4	382 Td (bret 137
29	Thermotolerance of apple tree leaves probed by chlorophyll a fluorescence and modulated 820 nm reflection during seasonal shift. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 347-356.	1.7	16
30	Photoprotection mechanism in the †Fuji' apple peel at different levels of photooxidative sunburn. Physiologia Plantarum, 2015, 154, 54-65.	2.6	33
31	Phenolic compounds and antioxidant activity in red-fleshed apples. Journal of Functional Foods, 2015, 18, 1086-1094.	1.6	115
32	Photoinhibition-Like Damage to the Photosynthetic Apparatus in Plant Leaves Induced by Submergence Treatment in the Dark. PLoS ONE, 2014, 9, e89067.	1.1	17
33	Reactive oxygen species produced via plasma membrane NADPH oxidase regulate anthocyanin synthesis in apple peel. Planta, 2014, 240, 1023-1035.	1.6	40
34	Comparison of phenolic metabolism and primary metabolism between green â€~Anjou' pear and its bud mutation, red â€~Anjou'. Physiologia Plantarum, 2014, 150, 339-354.	2.6	23
35	Response of phenolic compounds in â€~Golden Delicious' and â€~Red Delicious' apples peel to fruit bagging and subsequent sunlight re-exposure. Scientia Horticulturae, 2014, 168, 161-167.	g 1.7	31
36	Anthocyanin contributes more to hydrogen peroxide scavenging than other phenolics in apple peel. Food Chemistry, 2014, 152, 205-209.	4.2	79

#	Article	IF	CITATION
37	Photosynthetic performance during leaf expansion in Malus micromalus probed by chlorophyll a fluorescence and modulated 820nm reflection. Journal of Photochemistry and Photobiology B: Biology, 2014, 137, 144-150.	1.7	58
38	The role of anthocyanin in photoprotection and its relationship with the xanthophyll cycle and the antioxidant system in apple peel depends on the light conditions. Physiologia Plantarum, 2013, 149, 354-366.	2.6	17
39	Primary and secondary metabolism in the sunâ€exposed peel and the shaded peel of apple fruit. Physiologia Plantarum, 2013, 148, 9-24.	2.6	78
40	Partitioning of absorbed light energy differed between the sun-exposed side and the shaded side of apple fruits under high light conditions. Plant Physiology and Biochemistry, 2012, 60, 12-17.	2.8	12
41	Different effects of light irradiation on the photosynthetic electron transport chain during apple tree leaf dehydration. Plant Physiology and Biochemistry, 2012, 55, 16-22.	2.8	25
42	Developmental changes of carbohydrates, organic acids, amino acids, and phenolic compounds in â€~Honeycrisp' apple flesh. Food Chemistry, 2010, 123, 1013-1018.	4.2	273
43	Comparison of thermotolerance of sun-exposed peel and shaded peel of â€~Fuji' apple. Environmental and Experimental Botany, 2009, 66, 110-116.	2.0	47
44	The elevated anthocyanin level in the shaded peel of â€~Anjou' pear enhances its tolerance to high temperature under high light. Plant Science, 2009, 177, 418-426.	1.7	31
45	Heterogeneous behavior of PSII in soybean (Glycine max) leaves with identical PSII photochemistry efficiency under different high temperature treatments. Journal of Plant Physiology, 2009, 166, 1607-1615.	1.6	93
46	Effects of high temperature coupled with high light on the balance between photooxidation and photoprotection in the sun-exposed peel of apple. Planta, 2008, 228, 745-756.	1.6	116
47	Red â€~Anjou' pear has a higher photoprotective capacity than green â€~Anjou'. Physiologia Plantarum, 2008, 134, 486-498.	2.6	44
48	The shaded side of apple fruit becomes more sensitive to photoinhibition with fruit development. Physiologia Plantarum, 2008, 134, 282-292.	2.6	45