Maher F El-Kady

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8862788/publications.pdf Version: 2024-02-01

		126858	265120
41	14,110	33	42
papers	citations	h-index	g-index
43	43	43	15186
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Trilayer Metal–Organic Frameworks as Multifunctional Electrocatalysts for Energy Conversion and Storage Applications. Journal of the American Chemical Society, 2022, 144, 3411-3428.	6.6	142
2	Macroporous Graphene Frameworks for Sensing and Supercapacitor Applications. Advanced Functional Materials, 2022, 32, .	7.8	35
3	3D Graphene Network with Covalently Grafted Aniline Tetramer for Ultralongâ€Life Supercapacitors. Advanced Functional Materials, 2021, 31, 2102397.	7.8	48
4	Facile Fabrication of Multivalent VO <i>_x</i> /Graphene Nanocomposite Electrodes for Highâ€Energyâ€Đensity Symmetric Supercapacitors. Advanced Energy Materials, 2021, 11, 2100768.	10.2	40
5	Polyaniline-Lignin Interpenetrating Network for Supercapacitive Energy Storage. Nano Letters, 2021, 21, 9485-9493.	4.5	45
6	Self-Assembly and Cross-Linking of Conducting Polymers into 3D Hydrogel Electrodes for Supercapacitor Applications. ACS Applied Energy Materials, 2020, 3, 923-932.	2.5	73
7	Triboelectric Nanogenerator versus Piezoelectric Generator at Low Frequency (<4ÂHz): A Quantitative Comparison. IScience, 2020, 23, 101286.	1.9	84
8	Toward Highâ€Performance Triboelectric Nanogenerators by Engineering Interfaces at the Nanoscale: Looking into the Future Research Roadmap. Advanced Materials Technologies, 2020, 5, 2000520.	3.0	27
9	Enhancing cycling stability of tungsten oxide supercapacitor electrodes <i>via</i> a boron cluster-based molecular cross-linking approach. Journal of Materials Chemistry A, 2020, 8, 18015-18023.	5.2	13
10	Exploration of Advanced Electrode Materials for Approaching Highâ€Performance Nickelâ€Based Superbatteries. Small, 2020, 16, e2001340.	5.2	26
11	Nile Blue Functionalized Graphene Aerogel as a Pseudocapacitive Negative Electrode Material across the Full pH Range. ACS Nano, 2019, 13, 12567-12576.	7.3	66
12	Hybrid Transparent PEDOT:PSS Molybdenum Oxide Battery-like Supercapacitors. ACS Applied Energy Materials, 2019, 2, 4629-4639.	2.5	50
13	All printable snow-based triboelectric nanogenerator. Nano Energy, 2019, 60, 17-25.	8.2	42
14	Graphene/oligoaniline based supercapacitors: Towards conducting polymer materials with high rate charge storage. Energy Storage Materials, 2019, 19, 137-147.	9.5	39
15	Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chemical Society Reviews, 2019, 48, 1272-1341.	18.7	824
16	Asymmetric supercapacitors: An alternative to activated carbon negative electrodes based on earth abundant elements. Materials Today Energy, 2019, 12, 26-36.	2.5	63
17	A molecular cross-linking approach for hybrid metal oxides. Nature Materials, 2018, 17, 341-348.	13.3	90
18	A Simple Route to Porous Graphene from Carbon Nanodots for Supercapacitor Applications. Advanced Materials, 2018, 30, 1704449.	11.1	302

MAHER F EL-KADY

#	Article	IF	CITATIONS
19	An integrated electrochemical device based on earth-abundant metals for both energy storage and conversion. Energy Storage Materials, 2018, 11, 282-293.	9.5	82
20	The use of an electrocatalytic redox electrolyte for pushing the energy density boundary of a flexible polyaniline electrode to a new limit. Nano Energy, 2018, 44, 489-498.	8.2	105
21	Embedding hollow Co3O4 nanoboxes into a three-dimensional macroporous graphene framework for high-performance energy storage devices. Nano Research, 2018, 11, 2836-2846.	5.8	31
22	Thionine Functionalized 3D Graphene Aerogel: Combining Simplicity and Efficiency in Fabrication of a Metalâ€Free Redox Supercapacitor. Advanced Energy Materials, 2018, 8, 1802869.	10.2	153
23	Design and Mechanisms of Asymmetric Supercapacitors. Chemical Reviews, 2018, 118, 9233-9280.	23.0	2,379
24	Gold Nanoparticles Decorated Graphene as a High Performance Sensor for Determination of Trace Hydrazine Levels in Water. Electroanalysis, 2018, 30, 1757-1766.	1.5	29
25	Nextâ€Generation Activated Carbon Supercapacitors: A Simple Step in Electrode Processing Leads to Remarkable Gains in Energy Density. Advanced Functional Materials, 2017, 27, 1605745.	7.8	220
26	Ultrathin Graphene–Protein Supercapacitors for Miniaturized Bioelectronics. Advanced Energy Materials, 2017, 7, 1700358.	10.2	88
27	A wide potential window aqueous supercapacitor based on LiMn2O4–rGO nanocomposite. Journal of the Iranian Chemical Society, 2017, 14, 2579-2590.	1.2	15
28	Boosting the capacitance and voltage of aqueous supercapacitors via redox charge contribution from both electrode and electrolyte. Nano Today, 2017, 15, 15-25.	6.2	108
29	Cadmium nanoclusters in a protein matrix: Synthesis, characterization, and application in targeted drug delivery and cellular imaging. Nano Research, 2016, 9, 3229-3246.	5.8	40
30	Graphene for batteries, supercapacitors and beyond. Nature Reviews Materials, 2016, 1, .	23.3	925
31	3D Freezeâ€Casting of Cellular Graphene Films for Ultrahighâ€Powerâ€Density Supercapacitors. Advanced Materials, 2016, 28, 6719-6726.	11.1	390
32	Synthesis of NiMnO ₃ /C nano-composite electrode materials for electrochemical capacitors. Nanotechnology, 2016, 27, 315401.	1.3	51
33	Flash Converted Graphene for Ultraâ€High Power Supercapacitors. Advanced Energy Materials, 2015, 5, 1500786.	10.2	80
34	Fabrication of high power LiNi0.5Mn1.5O4 battery cathodes by nanostructuring of electrode materials. RSC Advances, 2015, 5, 50433-50439.	1.7	12
35	Highly Ordered Mesoporous CuCo ₂ O ₄ Nanowires, a Promising Solution for High-Performance Supercapacitors. Chemistry of Materials, 2015, 27, 3919-3926.	3.2	353
36	Graphene-based materials for flexible supercapacitors. Chemical Society Reviews, 2015, 44, 3639-3665.	18.7	1,015

MAHER F EL-KADY

#	Article	IF	CITATIONS
37	Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4233-4238.	3.3	500
38	Direct preparation and processing of graphene/RuO 2 nanocomposite electrodes for high-performance capacitive energy storage. Nano Energy, 2015, 18, 57-70.	8.2	181
39	Direct Laser Writing of Graphene Electronics. ACS Nano, 2014, 8, 8725-8729.	7.3	123
40	Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nature Communications, 2013, 4, 1475.	5.8	1,592
41	Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors. Science, 2012, 335, 1326-1330.	6.0	3,627