Maher F El-Kady

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8862788/publications.pdf

Version: 2024-02-01

41 papers

14,110 citations

126858 33 h-index 42 g-index

43 all docs

43 docs citations

times ranked

43

15186 citing authors

#	Article	IF	CITATIONS
1	Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors. Science, 2012, 335, 1326-1330.	6.0	3,627
2	Design and Mechanisms of Asymmetric Supercapacitors. Chemical Reviews, 2018, 118, 9233-9280.	23.0	2,379
3	Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nature Communications, 2013, 4, 1475.	5 . 8	1,592
4	Graphene-based materials for flexible supercapacitors. Chemical Society Reviews, 2015, 44, 3639-3665.	18.7	1,015
5	Graphene for batteries, supercapacitors and beyond. Nature Reviews Materials, 2016, 1, .	23.3	925
6	Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chemical Society Reviews, 2019, 48, 1272-1341.	18.7	824
7	Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4233-4238.	3.3	500
8	3D Freezeâ€Casting of Cellular Graphene Films for Ultrahighâ€Powerâ€Density Supercapacitors. Advanced Materials, 2016, 28, 6719-6726.	11.1	390
9	Highly Ordered Mesoporous CuCo ₂ O ₄ Nanowires, a Promising Solution for High-Performance Supercapacitors. Chemistry of Materials, 2015, 27, 3919-3926.	3.2	353
10	A Simple Route to Porous Graphene from Carbon Nanodots for Supercapacitor Applications. Advanced Materials, 2018, 30, 1704449.	11.1	302
11	Nextâ€Generation Activated Carbon Supercapacitors: A Simple Step in Electrode Processing Leads to Remarkable Gains in Energy Density. Advanced Functional Materials, 2017, 27, 1605745.	7.8	220
12	Direct preparation and processing of graphene/RuO 2 nanocomposite electrodes for high-performance capacitive energy storage. Nano Energy, 2015, 18, 57-70.	8.2	181
13	Thionine Functionalized 3D Graphene Aerogel: Combining Simplicity and Efficiency in Fabrication of a Metalâ€Free Redox Supercapacitor. Advanced Energy Materials, 2018, 8, 1802869.	10.2	153
14	Trilayer Metal–Organic Frameworks as Multifunctional Electrocatalysts for Energy Conversion and Storage Applications. Journal of the American Chemical Society, 2022, 144, 3411-3428.	6.6	142
15	Direct Laser Writing of Graphene Electronics. ACS Nano, 2014, 8, 8725-8729.	7.3	123
16	Boosting the capacitance and voltage of aqueous supercapacitors via redox charge contribution from both electrode and electrolyte. Nano Today, 2017, 15, 15-25.	6.2	108
17	The use of an electrocatalytic redox electrolyte for pushing the energy density boundary of a flexible polyaniline electrode to a new limit. Nano Energy, 2018, 44, 489-498.	8.2	105
18	A molecular cross-linking approach for hybrid metal oxides. Nature Materials, 2018, 17, 341-348.	13.3	90

#	Article	IF	Citations
19	Ultrathin Graphene–Protein Supercapacitors for Miniaturized Bioelectronics. Advanced Energy Materials, 2017, 7, 1700358.	10.2	88
20	Triboelectric Nanogenerator versus Piezoelectric Generator at Low Frequency (<4ÂHz): A Quantitative Comparison. IScience, 2020, 23, 101286.	1.9	84
21	An integrated electrochemical device based on earth-abundant metals for both energy storage and conversion. Energy Storage Materials, 2018, 11, 282-293.	9.5	82
22	Flash Converted Graphene for Ultraâ€High Power Supercapacitors. Advanced Energy Materials, 2015, 5, 1500786.	10.2	80
23	Self-Assembly and Cross-Linking of Conducting Polymers into 3D Hydrogel Electrodes for Supercapacitor Applications. ACS Applied Energy Materials, 2020, 3, 923-932.	2.5	73
24	Nile Blue Functionalized Graphene Aerogel as a Pseudocapacitive Negative Electrode Material across the Full pH Range. ACS Nano, 2019, 13, 12567-12576.	7.3	66
25	Asymmetric supercapacitors: An alternative to activated carbon negative electrodes based on earth abundant elements. Materials Today Energy, 2019, 12, 26-36.	2.5	63
26	Synthesis of NiMnO ₃ /C nano-composite electrode materials for electrochemical capacitors. Nanotechnology, 2016, 27, 315401.	1.3	51
27	Hybrid Transparent PEDOT:PSS Molybdenum Oxide Battery-like Supercapacitors. ACS Applied Energy Materials, 2019, 2, 4629-4639.	2.5	50
28	3D Graphene Network with Covalently Grafted Aniline Tetramer for Ultralong‣ife Supercapacitors. Advanced Functional Materials, 2021, 31, 2102397.	7.8	48
29	Polyaniline-Lignin Interpenetrating Network for Supercapacitive Energy Storage. Nano Letters, 2021, 21, 9485-9493.	4.5	45
30	All printable snow-based triboelectric nanogenerator. Nano Energy, 2019, 60, 17-25.	8.2	42
31	Cadmium nanoclusters in a protein matrix: Synthesis, characterization, and application in targeted drug delivery and cellular imaging. Nano Research, 2016, 9, 3229-3246.	5.8	40
32	Facile Fabrication of Multivalent VO <i>_x</i> /Graphene Nanocomposite Electrodes for Highâ€Energyâ€Density Symmetric Supercapacitors. Advanced Energy Materials, 2021, 11, 2100768.	10.2	40
33	Graphene/oligoaniline based supercapacitors: Towards conducting polymer materials with high rate charge storage. Energy Storage Materials, 2019, 19, 137-147.	9.5	39
34	Macroporous Graphene Frameworks for Sensing and Supercapacitor Applications. Advanced Functional Materials, 2022, 32, .	7.8	35
35	Embedding hollow Co3O4 nanoboxes into a three-dimensional macroporous graphene framework for high-performance energy storage devices. Nano Research, 2018, 11, 2836-2846.	5.8	31
36	Gold Nanoparticles Decorated Graphene as a High Performance Sensor for Determination of Trace Hydrazine Levels in Water. Electroanalysis, 2018, 30, 1757-1766.	1.5	29

MAHER F EL-KADY

#	Article	IF	CITATIONS
37	Toward Highâ€Performance Triboelectric Nanogenerators by Engineering Interfaces at the Nanoscale: Looking into the Future Research Roadmap. Advanced Materials Technologies, 2020, 5, 2000520.	3.0	27
38	Exploration of Advanced Electrode Materials for Approaching Highâ€Performance Nickelâ€Based Superbatteries. Small, 2020, 16, e2001340.	5.2	26
39	A wide potential window aqueous supercapacitor based on LiMn2O4–rGO nanocomposite. Journal of the Iranian Chemical Society, 2017, 14, 2579-2590.	1.2	15
40	Enhancing cycling stability of tungsten oxide supercapacitor electrodes (i>via < /i> a boron cluster-based molecular cross-linking approach. Journal of Materials Chemistry A, 2020, 8, 18015-18023.	5 . 2	13
41	Fabrication of high power LiNi0.5Mn1.5O4 battery cathodes by nanostructuring of electrode materials. RSC Advances, 2015, 5, 50433-50439.	1.7	12