Chuankuan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8862725/publications.pdf

Version: 2024-02-01

186265 123424 4,017 76 28 61 citations g-index h-index papers 80 80 80 4944 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A global relationship between the heterotrophic and autotrophic components of soil respiration?. Global Change Biology, 2004, 10, 1756-1766.	9.5	482
2	Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. Forest Ecology and Management, 2006, 222, 9-16.	3.2	336
3	Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biology and Biochemistry, 2017, 115, 433-441.	8.8	314
4	Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nature Communications, 2020, 11 , 3072.	12.8	314
5	Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence. Global Change Biology, 2004, 10, 473-487.	9.5	244
6	Soil respiration in six temperate forests in China. Global Change Biology, 2006, 12, 2103-2114.	9.5	223
7	Trends in soil microbial communities during secondary succession. Soil Biology and Biochemistry, 2017, 115, 92-99.	8.8	123
8	The influence of fire on carbon distribution and net primary production of boreal Larix gmelinii forests in north-eastern China. Global Change Biology, 2001, 7, 719-730.	9.5	121
9	Carbon distribution of a well- and poorly-drained black spruce fire chronosequence. Global Change Biology, 2003, 9, 1066-1079.	9.5	116
10	Effects of forest degradation on microbial communities and soil carbon cycling: A global metaâ€analysis. Global Ecology and Biogeography, 2018, 27, 110-124.	5.8	114
11	Rhizospheric and heterotrophic components of soil respiration in six Chinese temperate forests. Global Change Biology, 2007, 13, 123-131.	9.5	101
12	Response of soil microbial communities to altered precipitation: A global synthesis. Global Ecology and Biogeography, 2018, 27, 1121-1136.	5.8	100
13	Carbon concentration variability of 10 Chinese temperate tree species. Forest Ecology and Management, 2009, 258, 722-727.	3.2	98
14	Environmental controls on carbon dioxide flux from black spruce coarse woody debris. Oecologia, 2002, 132, 374-381.	2.0	91
15	Disturbance legacies and climate jointly drive tree growth and mortality in an intensively studied boreal forest. Global Change Biology, 2014, 20, 216-227.	9.5	74
16	Soil surface CO2flux in a boreal black spruce fire chronosequence. Journal of Geophysical Research, 2003, 108, WFX 5-1.	3.3	68
17	Seasonality of soil CO2 efflux in a temperate forest: Biophysical effects of snowpack and spring freeze–thaw cycles. Agricultural and Forest Meteorology, 2013, 177, 83-92.	4.8	65
18	Stoichiometric responses of soil microflora to nutrient additions for two temperate forest soils. Biology and Fertility of Soils, 2017, 53, 397-406.	4.3	63

#	Article	IF	Citations
19	Spatiotemporal measurement and modeling of stand-level boreal forest soil temperatures. Agricultural and Forest Meteorology, 2005, 131, 27-40.	4.8	54
20	Nitrogen dynamics of a boreal black spruce wildfire chronosequence. Biogeochemistry, 2006, 81, 1-16.	3.5	51
21	Impacts of forest thinning on soil microbial community structure and extracellular enzyme activities: A global meta-analysis. Soil Biology and Biochemistry, 2020, 149, 107915.	8.8	43
22	Quantifying and reducing the differences in forest CO 2 -fluxes estimated by eddy covariance, biometric and chamber methods: A global synthesis. Agricultural and Forest Meteorology, 2017, 247, 93-103.	4.8	40
23	Spatial variations in non-structural carbohydrates in stems of twelve temperate tree species. Trees - Structure and Function, 2014, 28, 77-89.	1.9	38
24	Monitoring nitrogen deposition in typical forest ecosystems along a large transect in China. Environmental Monitoring and Assessment, 2013, 185, 833-844.	2.7	36
25	Effects of nutrient and paper mill biosolids amendments on the growth and nutrient status of hardwood forests. Forest Ecology and Management, 2003, 177, 95-116.	3.2	34
26	Carbon density and distribution of six Chinese temperate forests. Science China Life Sciences, 2010, 53, 831-840.	4.9	34
27	Impacts of thinning on soil carbon and nutrients and related extracellular enzymes in a larch plantation. Forest Ecology and Management, 2019, 450, 117523.	3.2	34
28	Reviews and syntheses: Soil resources and climate jointly drive variations in microbial biomass carbon and nitrogen in China's forest ecosystems. Biogeosciences, 2015, 12, 6751-6760.	3.3	32
29	Carbon storage, net primary production, and net ecosystem production in four major temperate forest types in northeastern China. Canadian Journal of Forest Research, 2016, 46, 143-151.	1.7	30
30	Nitrogen deposition and its spatial pattern in main forest ecosystems along north-south transect of eastern China. Chinese Geographical Science, 2014, 24, 137-146.	3.0	28
31	Dynamics of fine roots in five Chinese temperate forests. Journal of Plant Research, 2010, 123, 497-507.	2.4	27
32	Effects of thinning on soil saprotrophic and ectomycorrhizal fungi in a Korean larch plantation. Forest Ecology and Management, 2020, 461, 117920.	3.2	26
33	Nitrogen addition promotes soil microbial beta diversity and the stochastic assembly. Science of the Total Environment, 2022, 806, 150569.	8.0	26
34	Thinning promotes the nitrogen and phosphorous cycling in forest soils. Agricultural and Forest Meteorology, 2021, 311, 108665.	4.8	24
35	Environmental and biotic controls on the interannual variations in CO2 fluxes of a continental monsoon temperate forest. Agricultural and Forest Meteorology, 2021, 296, 108232.	4.8	23
36	Spatio-temporal patterns of forest carbon dioxide exchange based on global eddy covariance measurements. Science in China Series D: Earth Sciences, 2008, 51, 1129-1143.	0.9	21

#	Article	IF	Citations
37	Allométrie du bois de cœur et de l'aubier pour sept espèces d'arbres tempérées chinoises. Annals Forest Science, 2010, 67, 410-410.	of 2.0	21
38	Wind Regimes above and below a Temperate Deciduous Forest Canopy in Complex Terrain: Interactions between Slope and Valley Winds. Atmosphere, 2015, 6, 60-87.	2.3	21
39	Empirical models for tracing seasonal changes in leaf area index in deciduous broadleaf forests by digital hemispherical photography. Forest Ecology and Management, 2015, 351, 67-77.	3.2	19
40	Co-ordinated performance of leaf hydraulics and economics in 10 Chinese temperate tree species. Functional Plant Biology, 2016, 43, 1082.	2.1	19
41	Partitioning soil respiration of temperate forest ecosystems in northeastern China. Acta Ecologica Sinica, 2006, 26, 1640-1646.	1.9	17
42	Conifers but not angiosperms exhibit vulnerability segmentation between leaves and branches in a temperate forest. Tree Physiology, 2019, 39, 454-462.	3.1	16
43	Prediction of annual soil respiration from its flux at mean annual temperature. Agricultural and Forest Meteorology, 2020, 287, 107961.	4.8	16
44	Improving the CO2 storage measurements with a single profile system in a tall-dense-canopy temperate forest. Agricultural and Forest Meteorology, 2016, 228-229, 327-338.	4.8	15
45	Autumn phenology of a temperate deciduous forest: Validation of remote sensing approach with decadal leaf-litterfall measurements. Agricultural and Forest Meteorology, 2019, 279, 107758.	4.8	14
46	Variations in fine root dynamics and turnover rates in five forest types in northeastern China. Journal of Forestry Research, 2020, 31, 871-884.	3.6	14
47	Towards a standardized protocol for measuring leaf area index in deciduous forests with litterfall collection. Forest Ecology and Management, 2019, 447, 87-94.	3.2	13
48	Can vegetation index track the interannual variation in gross primary production of temperate deciduous forests?. Ecological Processes, 2021, 10, .	3.9	13
49	Increasing soil carbon stocks in eight permanent forest plots in China. Biogeosciences, 2020, 17, 715-726.	3.3	12
50	Contrasting responses of hydraulic traits between leaf and branch to 16-year nitrogen addition in a larch plantation. Forest Ecology and Management, 2020, 475, 118461.	3.2	11
51	Nutrient resorption estimation compromised by leaf mass loss and area shrinkage: Variations and solutions. Forest Ecology and Management, 2020, 472, 118232.	3.2	11
52	Defoliation-induced tree growth declines are jointly limited by carbon source and sink activities. Science of the Total Environment, 2021, 762, 143077.	8.0	10
53	Magnitude and mechanisms of nitrogenâ€mediated responses of tree biomass production to elevated CO ₂ : A global synthesis. Journal of Ecology, 2021, 109, 4038-4055.	4.0	10
54	Biotic and climatic controls on the interannual variation in canopy litterfall of a deciduous broad-leaved forest. Agricultural and Forest Meteorology, 2021, 307, 108483.	4.8	10

#	Article	IF	Citations
55	On improving the accuracy of digital hemispherical photography measurements of seasonal leaf area index variation in deciduous broadleaf forests. Canadian Journal of Forest Research, 2015, 45, 721-731.	1.7	9
56	Differential effects of nitrogen vs. phosphorus limitation on terrestrial carbon storage in two subtropical forests: A Bayesian approach. Science of the Total Environment, 2021, 795, 148485.	8.0	9
57	Mycorrhizal associations differentiate soil respiration in five temperate monocultures in Northeast China. Forest Ecology and Management, 2018, 430, 78-85.	3.2	8
58	Measuring Vegetation Phenology with Near-Surface Remote Sensing in a Temperate Deciduous Forest: Effects of Sensor Type and Deployment. Remote Sensing, 2019, 11, 1063.	4.0	7
59	Responses of tree leaf gas exchange to elevated CO ₂ combined with changes in temperature and water availability: A global synthesis. Global Ecology and Biogeography, 2021, 30, 2500-2512.	5.8	7
60	Natural $\langle scp \rangle \langle sup \rangle 15 \langle sup \rangle N \langle scp \rangle$ abundance of ammonium and nitrate in soil profiles: New insights into forest ecosystem nitrogen saturation. Ecosphere, 2022, 13, .	2.2	7
61	Timing of leaf fall and changes in litter nutrient concentration compromise estimates of nutrient fluxes and nutrient resorption efficiency. Forest Ecology and Management, 2022, 513, 120188.	3.2	7
62	Inter-specific and seasonal variations in photosynthetic capacity and water use efficiency of five temperate tree species in Northeastern China. Scandinavian Journal of Forest Research, 2011, 26, 21-29.	1.4	6
63	Simulating net primary production and soil-surface CO ₂ flux of temperate forests in Northeastern China. Scandinavian Journal of Forest Research, 2011, 26, 30-39.	1.4	6
64	Impacts of fire severity and post-fire reforestation on carbon pools in boreal larch forests in Northeast China. Journal of Plant Ecology, 2015, , rtv036.	2.3	5
65	Does the net primary production converge across six temperate forest types under the same climate?. Forest Ecology and Management, 2019, 448, 535-542.	3.2	5
66	Sampling protocols of specific leaf area for improving accuracy of the estimation of forest leaf area index. Agricultural and Forest Meteorology, 2021, 298-299, 108286.	4.8	5
67	Globally altitudinal trends in soil carbon and nitrogen storages. Catena, 2022, 210, 105870.	5.0	5
68	Coloration and phenology manifest nutrient variability in senesced leaves of 46 temperate deciduous woody species. Journal of Plant Ecology, 2022, 15, 700-710.	2.3	4
69	Effects of long-term nitrogen addition on soil fungal communities in two temperate plantations with different mycorrhizal associations. Applied Soil Ecology, 2021, 168, 104111.	4.3	4
70	Different hydraulic strategies under drought stress between Fraxinus mandshurica and Larix gmelinii seedlings. Journal of Forestry Research, 2023, 34, 99-111.	3.6	4
71	Sap flow of the major tree species in the eastern mountainous region in northeast China. Frontiers of Forestry in China: Selected Publications From Chinese Universities, 2006, 1, 387-393.	0.2	2
72	Thermal acclimation of leaf dark respiration of Larix gmelinii: A latitudinal transplant experiment. Science of the Total Environment, 2020, 743, 140634.	8.0	2

#	Article	IF	CITATIONS
73	The plural of anecdote is not data: Rigorously testing a boreal forest chronosequence. Nature Precedings, 2009, , .	0.1	O
74	Toposequence variability in tree growth associated with leaf traits for Larix gmelinii. Forest Ecology and Management, 2021, 479, 118611.	3.2	0
75	Leaf hydraulic traits of larch and ash trees in response to long-term nitrogen addition in northeast China. Journal of Plant Ecology, 0, , .	2.3	O
76	Effect of Biophysical Factors on Spatio-temporal Variation in Stem Respiration*. Ying Yong Yu Huan Jing Sheng Wu Xue Bao = Chinese Journal of Applied and Environmental Biology, 2010, 2009, 880-887.	0.1	0