
Boming Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8862329/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A fractal permeability model for bi-dispersed porous media. International Journal of Heat and Mass Transfer, 2002, 45, 2983-2993.	4.8	862
2	SOME FRACTAL CHARACTERS OF POROUS MEDIA. Fractals, 2001, 09, 365-372.	3.7	666
3	Developing a new form of permeability and Kozeny–Carman constant for homogeneous porous media by means of fractal geometry. Advances in Water Resources, 2008, 31, 74-81.	3.8	574
4	Analysis of Flow in Fractal Porous Media. Applied Mechanics Reviews, 2008, 61, .	10.1	374
5	A Discussion of the Effect of Tortuosity on the Capillary Imbibition in Porous Media. Transport in Porous Media, 2011, 89, 251-263.	2.6	365
6	Fractal Characterization of Spontaneous Co-current Imbibition in Porous Media. Energy & Fuels, 2010, 24, 1860-1867.	5.1	300
7	A fractal analysis of permeability for fractured rocks. International Journal of Heat and Mass Transfer, 2015, 81, 75-80.	4.8	219
8	A fractal in-plane permeability model for fabrics. Polymer Composites, 2002, 23, 201-221.	4.6	175
9	Prediction of relative permeability in unsaturated porous media with a fractal approach. International Journal of Heat and Mass Transfer, 2013, 64, 829-837.	4.8	171
10	The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles. Journal Physics D: Applied Physics, 2007, 40, 3164-3171.	2.8	160
11	Fractal analysis of permeabilities for porous media. AICHE Journal, 2004, 50, 46-57.	3.6	156
12	Fractal analysis of invasion depth of extraneous fluids in porous media. Chemical Engineering Science, 2010, 65, 5178-5186.	3.8	147
13	Permeabilities of unsaturated fractal porous media. International Journal of Multiphase Flow, 2003, 29, 1625-1642.	3.4	143
14	Heat conduction in fractal tree-like branched networks. International Journal of Heat and Mass Transfer, 2006, 49, 3746-3751.	4.8	140
15	A fractal resistance model for flow through porous media. International Journal of Heat and Mass Transfer, 2007, 50, 3925-3932.	4.8	130
16	Fractal Models for the Effective Thermal Conductivity of Bidispersed Porous Media. Journal of Thermophysics and Heat Transfer, 2002, 16, 22-29.	1.6	120
17	A generalized model for the effective thermal conductivity of porous media based on self-similarity. Journal Physics D: Applied Physics, 2004, 37, 3030-3040.	2.8	114
18	A diffusivity model for gas diffusion through fractal porous media. Chemical Engineering Science, 2012, 68, 650-655.	3.8	114

#	Article	IF	CITATIONS
19	Permeability of fractal porous media by Monte Carlo simulations. International Journal of Heat and Mass Transfer, 2005, 48, 2787-2794.	4.8	108
20	A fractal model for the starting pressure gradient for Bingham fluids in porous media. International Journal of Heat and Mass Transfer, 2008, 51, 1402-1408.	4.8	104
21	Turbulent impinging jet heat transfer enhancement due to intermittent pulsation. International Journal of Thermal Sciences, 2010, 49, 1247-1252.	4.9	104
22	Fractal analysis of permeability of dual-porosity media embedded with random fractures. International Journal of Heat and Mass Transfer, 2015, 88, 814-821.	4.8	102
23	Analysis of permeability for the fractal-like tree network by parallel and series models. Physica A: Statistical Mechanics and Its Applications, 2006, 369, 884-894.	2.6	96
24	A resistance model for flow through porous media. Transport in Porous Media, 2008, 71, 331-343.	2.6	96
25	A new model for heat conduction of nanofluids based on fractal distributions of nanoparticles. Journal Physics D: Applied Physics, 2006, 39, 4486-4490.	2.8	95
26	Transport Phenomena and Properties in Treelike Networks. Applied Mechanics Reviews, 2016, 68, .	10.1	94
27	A fractal analysis of laminar flow resistance in roughened microchannels. International Journal of Heat and Mass Transfer, 2014, 77, 208-217.	4.8	89
28	On the Physical Properties of Apparent Twoâ€₽hase Fractal Porous Media. Vadose Zone Journal, 2009, 8, 177-186.	2.2	88
29	A fractal model for gas slippage factor in porous media in the slip flow regime. Chemical Engineering Science, 2013, 87, 209-215.	3.8	88
30	Permeability model for fractal porous media with rough surfaces. Microfluidics and Nanofluidics, 2015, 18, 1085-1093.	2.2	88
31	FRACTAL ANALYSIS OF FLOW RESISTANCE IN TREE-LIKE BRANCHING NETWORKS WITH ROUGHENED MICROCHANNELS. Fractals, 2017, 25, 1750008.	3.7	88
32	A fractal permeability model for gas flow through dual-porosity media. Journal of Applied Physics, 2012, 111, .	2.5	83
33	Analysis of seepage characters in fractal porous media. International Journal of Heat and Mass Transfer, 2009, 52, 3272-3278.	4.8	81
34	PREDICTION OF MAXIMUM PORE SIZE OF POROUS MEDIA BASED ON FRACTAL GEOMETRY. Fractals, 2010, 18, 417-423.	3.7	81
35	Fractal-like tree networks reducing the thermal conductivity. Physical Review E, 2006, 73, 066302.	2.1	73
36	The scaling laws of transport properties for fractal-like tree networks. Journal of Applied Physics, 2006, 100, 104906.	2.5	71

#	Article	IF	CITATIONS
37	A Monte Carlo method for simulating fractal surfaces. Physica A: Statistical Mechanics and Its Applications, 2007, 386, 176-186.	2.6	66
38	A simplified in-plane permeability model for textile fabrics. Polymer Composites, 2000, 21, 660-685.	4.6	64
39	Analysis of axial thermal conductivity of dual-porosity fractal porous media with random fractures. International Journal of Heat and Mass Transfer, 2016, 102, 884-890.	4.8	63
40	A self-similarity model for effective thermal conductivity of porous media. Journal Physics D: Applied Physics, 2003, 36, 2157-2164.	2.8	62
41	Radial permeability of fractured porous media by Monte Carlo simulations. International Journal of Heat and Mass Transfer, 2013, 57, 369-374.	4.8	59
42	A Fractal Model for Nucleate Pool Boiling Heat Transfer. Journal of Heat Transfer, 2002, 124, 1117-1124.	2.1	56
43	Fractal geometry model for effective thermal conductivity of three-phase porous media. Journal of Applied Physics, 2004, 95, 6426-6434.	2.5	54
44	Fractal analysis of dimensionless capillary pressure function. International Journal of Heat and Mass Transfer, 2014, 69, 26-33.	4.8	54
45	FRACTAL CHARACTERS OF PORE MICROSTRUCTURES OF TEXTILE FABRICS. Fractals, 2001, 09, 155-163.	3.7	51
46	An analysis of the radial flow in the heterogeneous porous media based on fractal and constructal tree networks. Physica A: Statistical Mechanics and Its Applications, 2008, 387, 6471-6483.	2.6	51
47	Fractal Model for Thermal Contact Conductance. Journal of Heat Transfer, 2008, 130, .	2.1	50
48	A fractal model for heat transfer of nanofluids by convection in a pool. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 4178-4181.	2.1	48
49	An analytical solution for transverse thermal conductivities of unidirectional fibre composites with thermal barrier. Journal Physics D: Applied Physics, 2002, 35, 1867-1874.	2.8	47
50	FRACTAL DIMENSION FOR TORTUOUS STREAMTUBES IN POROUS MEDIA. Fractals, 2007, 15, 385-390.	3.7	47
51	Research on the effective gas diffusion coefficient in dry porous media embedded with a fractal-like tree network. Physica A: Statistical Mechanics and Its Applications, 2013, 392, 1557-1566.	2.6	45
52	Geometrical Models for Tortuosity of Streamlines in Threeâ€Dimensional Porous Media. Canadian Journal of Chemical Engineering, 2006, 84, 301-309.	1.7	44
53	A numerical study on growth mechanism of dropwise condensation. International Journal of Heat and Mass Transfer, 2011, 54, 2004-2013.	4.8	44
54	A generalized thermal conductivity model for unsaturated porous media with fractal geometry. International Journal of Heat and Mass Transfer, 2020, 152, 119540.	4.8	44

#	Article	IF	CITATIONS
55	Optimal structure of damaged tree-like branching networks for the equivalent thermal conductivity. International Journal of Thermal Sciences, 2016, 102, 89-99.	4.9	43
56	Fractal-like tree networks increasing the permeability. Physical Review E, 2007, 75, 056301.	2.1	41
57	NUMERICAL SIMULATION OF TORTUOSITY FOR FLUID FLOW IN TWO-DIMENSIONAL PORE FRACTAL MODELS OF POROUS MEDIA. Fractals, 2014, 22, 1450015.	3.7	40
58	A FRACTAL ANALYSIS OF PERMEABILITY FOR POWER-LAW FLUIDS IN POROUS MEDIA. Fractals, 2006, 14, 171-177.	3.7	38
59	Thermal conductivity of nanofluids and size distribution of nanoparticles by Monte Carlo simulations. Journal of Nanoparticle Research, 2008, 10, 1319-1328.	1.9	38
60	FRACTAL DIMENSIONS FOR UNSATURATED POROUS MEDIA. Fractals, 2004, 12, 17-22.	3.7	37
61	Permeability of the fractal disk-shaped branched network with tortuosity effect. Physics of Fluids, 2006, 18, 078103.	4.0	37
62	A new deterministic complex network model with hierarchical structure. Physica A: Statistical Mechanics and Its Applications, 2007, 385, 707-717.	2.6	37
63	A fractal model for the starting pressure gradient for Bingham fluids in porous media embedded with fractal-like tree networks. International Journal of Heat and Mass Transfer, 2011, 54, 4491-4494.	4.8	37
64	Study on Optimization of Transverse Thermal Conductivities of Unidirectional Composites. Journal of Heat Transfer, 2003, 125, 980-987.	2.1	35
65	FRACTAL DIMENSIONS FOR MULTIPHASE FRACTAL MEDIA. Fractals, 2006, 14, 111-118.	3.7	35
66	Fractal Theory on Drying: A Review. Drying Technology, 2008, 26, 640-650.	3.1	35
67	Analysis of thermal conductivity in living biological tissue with vascular network and convection. International Journal of Thermal Sciences, 2014, 86, 219-226.	4.9	35
68	Fractal analysis of the effective thermal conductivity of biological media embedded with randomly distributed vascular trees. International Journal of Heat and Mass Transfer, 2013, 67, 74-80.	4.8	34
69	A novel fractal model for permeability of damaged tree-like branching networks. International Journal of Heat and Mass Transfer, 2018, 127, 278-285.	4.8	34
70	STUDY ON EVOLUTION OF FRACTAL DIMENSION FOR FRACTURED COAL SEAM UNDER MULTI-FIELD COUPLING. Fractals, 2020, 28, 2050072.	3.7	34
71	Heat transfer under a pulsed slot turbulent impinging jet at large temperature differences. Thermal Science, 2010, 14, 271-281.	1.1	34
72	FRACTAL ANALYSIS OF DIGIT ROCK CORES. Fractals, 2020, 28, 2050144.	3.7	33

#	Article	IF	CITATIONS
73	A fractal analysis of subcooled flow boiling heat transfer. International Journal of Multiphase Flow, 2007, 33, 1126-1139.	3.4	32
74	A new comprehensive model for nucleate pool boiling heat transfer of pure liquid at low to high heat fluxes including CHF. International Journal of Heat and Mass Transfer, 2009, 52, 4203-4210.	4.8	32
75	Study of the starting pressure gradient in branching network. Science China Technological Sciences, 2010, 53, 2397-2403.	4.0	32
76	A FRACTAL-MONTE CARLO APPROACH TO MODEL OIL AND WATER TWO-PHASE SEEPAGE IN LOW-PERMEABILITY RESERVOIRS WITH ROUGH SURFACES. Fractals, 2021, 29, 2150003.	3.7	32
77	A fractal analysis of dropwise condensation heat transfer. International Journal of Heat and Mass Transfer, 2009, 52, 4823-4828.	4.8	31
78	Fractal analysis of Herschel–Bulkley fluid flow in porous media. International Journal of Heat and Mass Transfer, 2010, 53, 3570-3574.	4.8	31
79	Analysis of permeabilities for slug flow in fractal porous media. International Communications in Heat and Mass Transfer, 2017, 88, 194-202.	5.6	31
80	A FRACTAL MODEL FOR PREDICTING OXYGEN EFFECTIVE DIFFUSIVITY OF POROUS MEDIA WITH ROUGH SURFACES UNDER DRY AND WET CONDITIONS. Fractals, 2021, 29, 2150076.	3.7	31
81	Minimum applied pressure for a drop through an abruptly constricted capillary. Microfluidics and Nanofluidics, 2015, 19, 1-8.	2.2	30
82	A fractal model for the starting pressure gradient for Bingham fluids in porous media embedded with randomly distributed fractal-like tree networks. Advances in Water Resources, 2011, 34, 1574-1580.	3.8	29
83	Analysis of electroosmotic characters in fractal porous media. Chemical Engineering Science, 2015, 127, 202-209.	3.8	29
84	A Generalized Model for the Effective Thermal Conductivity of Unsaturated Porous Media Based on Self-Similarity. Journal of Porous Media, 2007, 10, 551-568.	1.9	29
85	A fractal model for critical heat flux in pool boiling. International Journal of Thermal Sciences, 2007, 46, 426-433.	4.9	28
86	Study of the effect of capillary pressure on the permeability of porous media embedded with a fractal-like tree network. International Journal of Multiphase Flow, 2011, 37, 507-513.	3.4	28
87	A FRACTAL PERMEABILITY MODEL FOR POROUS–FRACTURE MEDIA WITH THE TRANSFER OF FLUIDS FROM POROUS MATRIX TO FRACTURE. Fractals, 2019, 27, 1950121.	3.7	27
88	A fractal model for spherical seepage in porous media. International Communications in Heat and Mass Transfer, 2014, 58, 71-78.	5.6	26
89	Symmetry is not always prefect. International Journal of Heat and Mass Transfer, 2010, 53, 5022-5024.	4.8	25
90	A fractal model for gaseous leak rates through contact surfaces under non-isothermal condition. Applied Thermal Engineering, 2013, 52, 54-61.	6.0	23

Вомінд Үи

#	Article	IF	CITATIONS
91	Heat transfer during flow and resin reaction through fiber reinforcement. Chemical Engineering Science, 2000, 55, 3365-3376.	3.8	21
92	A fractal streaming current model for charged microscale porous media. Journal of Electrostatics, 2014, 72, 441-446.	1.9	21
93	A FRACTAL MODEL FOR RELATIVE PERMEABILITY OF UNSATURATED POROUS MEDIA WITH CAPILLARY PRESSURE EFFECT. Fractals, 2007, 15, 217-222.	3.7	19
94	ANALYSIS OF PERMEABILITY EVOLUTION CHARACTERISTICS BASED ON DUAL FRACTAL COUPLING MODEL FOR COAL SEAM. Fractals, 2020, 28, 2050133.	3.7	19
95	Dynamic simulation on the preparation process of thin films by pulsed laser. Science in China Series A: Mathematics, 2001, 44, 1485-1496.	0.5	18
96	A comprehensive study of the effective thermal conductivity of living biological tissue with randomly distributed vascular trees. International Journal of Heat and Mass Transfer, 2014, 72, 616-621.	4.8	17
97	STUDY OF THE EFFECT OF CAPILLARY PRESSURE ON PERMEABILITY. Fractals, 2007, 15, 55-62.	3.7	16
98	SEEPAGE PROPERTIES OF ROCK FRACTURES WITH POWER LAW LENGTH DISTRIBUTIONS. Fractals, 2019, 27, 1950057.	3.7	15
99	Dynamic Modeling of a Tunnel Kiln. Heat Transfer Engineering, 1994, 15, 39-53.	1.9	14
100	Analysis of Seepage for Power-Law Fluids in the Fractal-Like Tree Network. Transport in Porous Media, 2011, 87, 191-206.	2.6	14
101	Kinetic approach to one-dimensional non-uniform granular gases. Journal of Physics A, 2005, 38, 8861-8872.	1.6	13
102	A FRACTAL ANALYSIS OF SUBCOOLED NUCLEATE POOL BOILING. Fractals, 2008, 16, 1-9.	3.7	12
103	Pyroelectric properties of ferroelectric ceramic/ferroelectric polymer 0–3 composites. Journal of Applied Physics, 2003, 94, 2553-2558.	2.5	11
104	ANALYSIS OF PERMEABILITY FOR ELLIS FLUID FLOW IN FRACTAL POROUS MEDIA. Chemical Engineering Communications, 2008, 195, 1240-1256.	2.6	10
105	A self-similarity model for dielectric constant of porous ultra low- <i>k</i> dielectrics. Journal Physics D: Applied Physics, 2007, 40, 5377-5382.	2.8	9
106	A COMPREHENSIVE MODEL FOR OIL–WATER RELATIVE PERMEABILITIES IN LOW-PERMEABILITY RESERVOIRS B FRACTAL THEORY. Fractals, 2020, 28, 2050055.	Y _{3.7}	9
107	A COMPREHENSIVE ANALYSIS OF THE SEEPAGE CHARACTERS OF NON-NEWTONIAN FLUIDS IN FRACTAL POROUS MEDIA. Journal of Porous Media, 2014, 17, 1031-1044.	1.9	9
108	Properties for two-dimensional fractal aggregation in external fields. Physical Review A, 1990, 41, 5564-5567.	2.5	8

#	Article	IF	CITATIONS
109	An Investigation on Transport Properties Near the Wall in Porous Media by Fractal Models. Heat Transfer Engineering, 2006, 27, 54-62.	1.9	8
110	FRACTAL ANALYSIS OF HYDRAULICS IN POROUS MEDIA WITH WALL EFFECTS. Fractals, 2014, 22, 1440001.	3.7	8
111	Fractal analysis of permeability near the wall in porous media. International Journal of Modern Physics C, 2014, 25, 1450021.	1.7	8
112	Comments on "Fractal Fragmentation, Soil Porosity, and Soil Water Properties: I. Theoryâ€: Soil Science Society of America Journal, 2007, 71, 632-632.	2.2	6
113	Computation of heat conduction in self-similar porous structures. Physical Review A, 1991, 44, 3664-3668.	2.5	5
114	EFFECTS OF PLASMA SHIELDING ON PULSED LASER ABLATION. Modern Physics Letters B, 2006, 20, 899-909.	1.9	5
115	Dielectric constant of porous ultra low-k dielectrics by fractal-Monte Carlo simulations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 1978-1982.	2.1	5
116	Transmission probability for Knudsen diffusion in a single chamber-throat pore. Vacuum, 2011, 85, 1017-1020.	3.5	5
117	PERMEABILITY MODELS FOR TWO-PHASE FLOW IN FRACTAL POROUS-FRACTURE MEDIA WITH THE TRANSFER OF FLUIDS FROM POROUS MATRIX TO FRACTURE. Fractals, 2021, 29, 2150148.	3.7	5
118	A HIERARCHICAL MODEL FOR MULTI-PHASE FRACTAL MEDIA. Fractals, 2010, 18, 53-64.	3.7	4
119	AN ANALYTICAL MODEL FOR EFFECTIVE THERMAL CONDUCTIVITY OF THE MEDIA EMBEDDED WITH FRACTURE NETWORKS OF POWER LAW LENGTH DISTRIBUTIONS. Fractals, 2022, 30, .	3.7	4
120	FRACTAL MONTE CARLO SIMULATIONS OF THE EFFECTIVE PERMEABILITY FOR A FRACTURE NETWORK. Fractals, 0, , .	3.7	4
121	FRACTAL CHARACTERISTICS OF LOW-PERMEABILITY SANDSTONE RESERVOIRS. Fractals, 2022, 30, .	3.7	4
122	Discussion: "A Numerical Study of Thermal Dispersion in Porous Media―and "Numerical Determination of Thermal Dispersion Coefficients Using a Periodic Porous Structure― Journal of Heat Transfer, 2004, 126, 1060-1061.	2.1	3
123	Global-Space Propagating Characteristics of Pulsed-Laser-Induced Shock Waves. Modern Physics Letters B, 2003, 17, 1057-1066.	1.9	2
124	A MULTI-FIELD COUPLED SEEPAGE MODEL FOR COAL SEAM WITH FRACTURES OF POWER LAW LENGTH DISTRIBUTIONS. Fractals, 2021, 29, 2150140.	3.7	2
125	Transport property and application of tree-shaped network. , 2021, , 141-163.		2
126	Transport Phenomena in Porous Media and Fractal Geometry. Journal of Chemistry, 2015, 2015, 1-2.	1.9	1

#	Article	IF	CITATIONS
127	Comments on "reexamination of correlations for nucleate site distribution on boiling surface by fractal theory― Journal of Thermal Science, 2002, 11, 383-384.	1.9	0
128	An Overview: Analysis of Heat and Mass Transfer in Fractal Media by Fractal Geometry and Technique. , 2010, , .		0
129	Response to "Comments on the â€~On the Physical Properties of Apparent Two-Phase Fractal Porous Medium'― Vadose Zone Journal, 2010, 9, 194.	2.2	0