Kaori Sugihara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8862284/publications.pdf

Version: 2024-02-01

37	1,117	14	33
papers	citations	h-index	g-index
38	38	38	1765
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Recent progress in polydiacetylene mechanochromism. Nanoscale, 2022, 14, 1670-1678.	2.8	19
2	Recharging N95 masks using a van de Graaff generator for safe recycling. Soft Matter, 2021, 17, 10-15.	1.2	8
3	Lipid nanotubes as an organic template for the fabrication of carbon nanostructures by pyrolysis. Nanoscale, 2021, 13, 6927-6933.	2.8	1
4	Quantitative and Anisotropic Mechanochromism of Polydiacetylene at Nanoscale. Nano Letters, 2021, 21, 543-549.	4.5	18
5	Analysis of PDA Dose Curves for the Extraction of Antimicrobial Peptide Properties. Journal of Physical Chemistry B, 2021, 125, 12206-12213.	1.2	6
6	Flipper Probes for the Community. Chimia, 2021, 75, 1004.	0.3	9
7	Mechanism of Polydiacetylene Blue-to-Red Transformation Induced by Antimicrobial Peptides. Macromolecules, 2020, 53, 6469-6475.	2.2	21
8	Cooperative Function of LL-37 and HNP1 Protects Mammalian Cell Membranes from Lysis. Biophysical Journal, 2020, 119, 2440-2450.	0.2	13
9	Lipid Nanotubes as an Organic Template for an Electrically Conductive Gold Nanostructure Network. Journal of Physical Chemistry B, 2020, 124, 5761-5769.	1.2	4
10	Black Lipid Membranes: Challenges in Simultaneous Quantitative Characterization by Electrophysiology and Fluorescence Microscopy. Langmuir, 2019, 35, 8748-8757.	1.6	10
11	The deconvolution analysis of ATR-FTIR spectra of diacetylene during UV exposure. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 219, 23-32.	2.0	12
12	Effect of the nonspecific binding in differential impedance biosensing. Biointerphases, 2019, 14, 011004.	0.6	2
13	Anion Transport with Pnictogen Bonds in Direct Comparison with Chalcogen and Halogen Bonds. Journal of the American Chemical Society, 2019, 141, 810-814.	6.6	149
14	Characterization of di-4-ANEPPS with nano-black lipid membranes. Nanoscale, 2018, 10, 1090-1098.	2.8	7
15	Mechanosensitive Oligodithienothiophenes: Transmembrane Anion Transport Along Chalcogenâ€Bonding Cascades. Helvetica Chimica Acta, 2018, 101, e1800014.	1.0	46
16	Detailed Study on the Failure of the Wedge Calibration Method at Nanonewton Setpoints for Friction Force Microscopy. Journal of Physical Chemistry C, 2018, 122, 11464-11474.	1.5	13
17	Mechanosensitivity of polydiacetylene with a phosphocholine headgroup. Soft Matter, 2017, 13, 1728-1736.	1.2	16
18	Artificial tubular connections between cells based on synthetic lipid nanotubes. RSC Advances, 2017, 7, 20700-20708.	1.7	3

#	Article	IF	CITATIONS
19	Self-assembled Lipid Structures as Model Systems for Studying Electrical and Mechanical Properties of Cell Membranes. Chimia, 2016, 70, 805.	0.3	2
20	Combined Electrical and Optical Characterization of Polydiacetylene. Journal of Physical Chemistry B, 2016, 120, 3511-3515.	1.2	15
21	Gold Nanowire Fabrication with Surfaceâ€Attached Lipid Nanotube Templates. Small, 2016, 12, 4830-4836.	5.2	6
22	Freely drawn single lipid nanotube patterns. Soft Matter, 2015, 11, 2029-2035.	1.2	6
23	Artificial Bacterial Flagella for Remoteâ€Controlled Targeted Singleâ€Cell Drug Delivery. Small, 2014, 10, 1953-1957.	5.2	178
24	Label-free detection of cell-contractile activity with lipid nanotubes. Integrative Biology (United) Tj ETQq0 0 0 rgE	BT /Oyerlo	ck 10 Tf 50 54
25	Switching Transport through Nanopores with pH-Responsive Polymer Brushes for Controlled Ion Permeability. ACS Applied Materials & Samp; Interfaces, 2013, 5, 1400-1407.	4.0	90
26	A universal method for planar lipid bilayer formation by freeze and thaw. Soft Matter, 2012, 8, 5525.	1.2	21
27	Electrically induced lipid migration in non-lamellar phase. Journal of Colloid and Interface Science, 2012, 386, 421-427.	5.0	2
28	Directed Self-Assembly of Lipid Nanotubes from Inverted Hexagonal Structures. ACS Nano, 2012, 6, 6626-6632.	7. 3	21
29	Simultaneous OWLS and EIS monitoring of supported lipid bilayers with the pore forming peptide melittin. Sensors and Actuators B: Chemical, 2012, 161, 600-606.	4.0	18
30	Electrochemical plasmonic sensors. Analytical and Bioanalytical Chemistry, 2012, 402, 1773-1784.	1.9	71
31	Techniques for recording reconstituted ion channels. Analyst, The, 2011, 136, 1077.	1.7	45
32	Liposome and Lipid Bilayer Arrays Towards Biosensing Applications. Small, 2010, 6, 2481-2497.	5.2	191
33	The Resistance of Polyelectrolyte Multilayers in a Free-Hanging Configuration. Journal of Physical Chemistry B, 2010, 114, 13982-13987.	1.2	6
34	A Gigaseal Obtained with a Self-Assembled Long-Lifetime Lipid Bilayer on a Single Polyelectrolyte Multilayer-Filled Nanopore. ACS Nano, 2010, 4, 5047-5054.	7.3	34
35	Valley-splitting edge-channel transport in a Si/SiGe quantum Hall system. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1523-1525.	1.3	0
36	Spin-dependent nonlocal resistance in aSiâ^•SiGequantum Hall conductor. Physical Review B, 2007, 75, .	1.1	3

#	Article	IF	CITATIONS
37	Electrical polarization of nuclear spins in a breakdown regime of quantum Hall effect. Applied Physics Letters, 2007, 90, 022102.	1.5	44