MartÃ-n A RodrÃ-guez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/886223/publications.pdf Version: 2024-02-01

687363 677142 31 529 13 22 g-index citations h-index papers 32 32 32 308 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Crevice corrosion kinetics of nickel alloys bearing chromium and molybdenum. Electrochimica Acta, 2012, 76, 94-101.	5.2	67
2	Properties of the Passive Film on Alloy 22 in Chloride Solutions Obtained by Electrochemical Impedance. Journal of the Electrochemical Society, 2011, 158, C221-C230.	2.9	59
3	Determination of the Crevice Corrosion Stabilization and Repassivation Potentials of a Corrosion-Resistant Alloy. Corrosion, 2010, 66, 105002-105002-12.	1.1	42
4	Effect of Fluoride Ions on Crevice Corrosion and Passive Behavior of Alloy 22 in Hot Chloride Solutions. Corrosion, 2007, 63, 480-490.	1.1	38
5	Oxyanions as inhibitors of chloride-induced crevice corrosion of Alloy 22. Corrosion Science, 2013, 68, 72-83.	6.6	33
6	Crevice corrosion of nickel-based alloys considered as engineering barriers of geological repositories. Npj Materials Degradation, 2017, 1, .	5.8	31
7	Passivation and Depassivation of Alloy 22 in Acidic Chloride Solutions. Journal of the Electrochemical Society, 2010, 157, C1.	2.9	30
8	Crevice corrosion testing methods for measuring repassivation potential of alloy 22. Corrosion Engineering Science and Technology, 2011, 46, 129-133.	1.4	28
9	Effect of Potential on Crevice Corrosion Kinetics of Alloy 22. Corrosion, 2010, 66, 015007-015007-14.	1.1	27
10	Influence of halide ions and alloy microstructure on the passive and localized corrosion behavior of alloy 22. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 1179-1185.	2.2	22
11	The self-sustaining propagation of crevice corrosion on the hybrid BC1 Ni–Cr–Mo alloy in hot saline solutions. Corrosion Science, 2016, 105, 58-67.	6.6	21
12	Inhibition of localized corrosion in chromium containing stainless alloys. Corrosion Reviews, 2012, 30, .	2.0	15
13	Effect of Crevice Corrosion Inhibitors on the Passivity of Alloy 22. Journal of the Electrochemical Society, 2012, 159, C469-C475.	2.9	13
14	Comparative Study of the Crevice Corrosion Resistance of UNS S30400 and UNS S31600 Stainless Steels in the Context of Galvele's Model. Corrosion, 2017, 73, 41-52.	1.1	13
15	Anticipated Degradation Modes of Metallic Engineered Barriers for High-Level Nuclear Waste Repositories. Jom, 2014, 66, 503-525.	1.9	11
16	Corrosion control of nuclear steam generators under normal operation and plant-outage conditions: a review. Corrosion Reviews, 2020, 38, 195-230.	2.0	10
17	Pitting corrosion of Ni-Cr-Fe alloys at open circuit potential in chloride plus thiosulfate solutions. Corrosion Science, 2022, 198, 110121.	6.6	10
18	Determining the Effect of the Main Alloying Elements on Localized Corrosion in Nickel Alloys Using Artificial Neural Networks. , 2015, 8, 21-28.		9

MartÃn A RodrÃguez

#	Article	IF	CITATIONS
19	Corrosion of High Purity Copper in Solutions Containing NaCl, Na2SO4 and NaHCO3 at Different Temperatures. , 2015, 9, 460-468.		8
20	Effect of Thiosulfate on Pitting Corrosion of Ni-Cr-Fe Alloys in Chloride Solutions. Corrosion, 2018, 74, 1214-1228.	1.1	8
21	Crevice Corrosion Repassivation of Ni-Cr-Mo Alloys by Cooling. Corrosion, 2019, 75, 604-615.	1.1	7
22	Effect of Environmental Variables on Crevice Corrosion Susceptibility of Ni–Cr–Mo Alloys for Nuclear Repositories. , 2015, 8, 11-20.		6
23	Optimization of the Double Loop Electrochemical Potentiokinetic Reactivation Method for Detecting Sensitization of Nickel Alloy 690. Corrosion, 2018, 74, 210-224.	1.1	6
24	Effect of Weak Acid Additions on the General and Localized Corrosion Susceptibility of Alloy 22 in Chloride Solutions. Materials Research Society Symposia Proceedings, 2008, 1107, 1.	0.1	4
25	Oxide Film Aging on Alloy 22 in Halide Containing Solutions. Materials Research Society Symposia Proceedings, 2006, 985, 1.	0.1	3
26	Effect of Alloy Composition on the Localized Corrosion Resistance of Nickel Alloys. Materials Research Society Symposia Proceedings, 2012, 1475, 489.	0.1	3
27	Effect of temperature on the crevice corrosion resistance of Ni-Cr-Mo alloys as engineered barriers in nuclear waste repositories. Materials Research Society Symposia Proceedings, 2012, 1475, 477.	0.1	3
28	Efficiency of inhibitors for chloride-induced crevice corrosion of Alloy 22. Materials Research Society Symposia Proceedings, 2012, 1475, 495.	0.1	1
29	Low Potential Pitting Corrosion of Ni-Cr-Fe Alloys in Chloride Plus Thiosulfate Solutions: Determination of Potential and Concentration Boundaries. Corrosion, 2020, 76, 786-795.	1.1	1
30	Determination of Crevice Corrosion Susceptibility of Alloy 22 Using Different Electrochemical Techniques. Materials Research Society Symposia Proceedings, 2010, 1265, 1.	0.1	0
31	Effect of Fluoride Ions on Passivity and Chloride-Induced Crevice Corrosion of Alloy 22. , 2008, , .		0