Anning Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8862137/publications.pdf

Version: 2024-02-01

430874 345221 2,201 36 18 36 h-index citations g-index papers 37 37 37 2864 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents: A study on adsorptive selectivity and mechanism. Catalysis Today, 2006, 111, 74-83.	4.4	535
2	Liquid-Phase Adsorption of Multi-Ring Thiophenic Sulfur Compounds on Carbon Materials with Different Surface Properties. Journal of Physical Chemistry B, 2006, 110, 4699-4707.	2.6	198
3	Efficient and Stable Photoelectrochemical Seawater Splitting with TiO ₂ @ <i>g</i> C ₃ N ₄ Nanorod Arrays Decorated by Co-Pi. Journal of Physical Chemistry C, 2015, 119, 20283-20292.	3.1	161
4	A novel method for oxidative desulfurization of liquid hydrocarbon fuels based on catalytic oxidation using molecular oxygen coupled with selective adsorption. Catalysis Today, 2007, 123, 276-284.	4.4	151
5	Effects of oxidative modification of carbon surface on the adsorption of sulfur compounds in diesel fuel. Applied Catalysis B: Environmental, 2009, 87, 190-199.	20.2	142
6	Graphene Sheets from Graphitized Anthracite Coal: Preparation, Decoration, and Application. Energy & E	5.1	136
7	Construction of inorganic–organic 2D/2D WO ₃ /g-C ₃ N ₄ nanosheet arrays toward efficient photoelectrochemical splitting of natural seawater. Physical Chemistry Chemical Physics, 2016, 18, 10255-10261.	2.8	118
8	Dielectric properties and thermal conductivity of core-shell structured Ni@NiO/poly(vinylidene) Tj ETQq0 0 0 rgBT	/9yerlock	10 Tf 50 46 110
9	Thermal, electrical, and mechanical properties of hexagonal boron nitride–reinforced epoxy composites. Journal of Composite Materials, 2014, 48, 2517-2526.	2.4	92
10	Adsorption Behavior of Methyl Orange onto Modified Ultrafine Coal Powder. Chinese Journal of Chemical Engineering, 2009, 17, 942-948.	3.5	75
11	HECT E3 ubiquitin ligases – emerging insights into their biological roles and disease relevance. Journal of Cell Science, 2020, 133, .	2.0	73
12	Fabrication of inorganic–organic core–shell heterostructure: novel CdS@g-C ₃ N ₄ nanorod arrays for photoelectrochemical hydrogen evolution. RSC Advances, 2015, 5, 14074-14080.	3.6	71
13	Kinetic comparison of photocatalysis with H2O2-free photo-Fenton process on BiVO4 and the effective antibiotic degradation. Chemical Engineering Journal, 2022, 429, 132577.	12.7	51
14	Tramadol hydrochloride/montmorillonite composite: Preparation and controlled drug release. Applied Clay Science, 2010, 49, 108-112.	5.2	45
15	Preparation of hollow TiO2 microspheres by the reverse microemulsions. Materials Letters, 2008, 62, 1930-1932.	2.6	41
16	Electrodeposited ternary iron-cobalt-nickel catalyst on nickel foam for efficient water electrolysis at high current density. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506, 694-702.	4.7	34
17	Time evolution of coal structure during low temperature air oxidation. International Journal of Mining Science and Technology, 2012, 22, 517-521.	10.3	30
18	Preparation of Organic Sulfur Adsorbent from Coal for Adsorption of Dibenzothiophene-type Compounds in Diesel Fuel. Energy & Samp; Fuels, 2009, 23, 2620-2627.	5.1	27

#	Article	IF	CITATIONS
19	Assembly of Copper Phthalocyanine on TiO2 Nanorod Arrays as Co-catalyst for Enhanced Photoelectrochemical Water Splitting. Frontiers in Chemistry, 2019, 7, 334.	3.6	14
20	A novel fiberâ€reinforced silicone rubber composite with Al particles for enhanced dielectric and thermal properties. Advances in Polymer Technology, 2018, 37, 1507-1516.	1.7	13
21	Effects of nitrogen doping on microstructure and photocatalytic activity of nanocrystalline TiO2 powders. Journal Wuhan University of Technology, Materials Science Edition, 2007, 22, 457-461.	1.0	9
22	Asymmetric Organocatalytic Michael Additions in Aqueous Media. Mini-Reviews in Organic Chemistry, 2013, 10, 207-216.	1.3	9
23	Composite of Cobaltâ€C ₃ N ₄ on TiO ₂ Nanorod Arrays as Coâ€catalyst for Enhanced Photoelectrochemical Water Splitting. ChemistrySelect, 2021, 6, 4319-4329.	1.5	9
24	Study on behavior and kinetics of sorption of Ag+ by Shenfu3â^1 coal. Microporous and Mesoporous Materials, 2005, 85, 104-110.	4.4	8
25	Biochemicals distribution and the collaborative pyrolysis study from three main components of Helianthus annuus stems based on PY-GC/MS. Renewable Energy, 2017, 114, 960-967.	8.9	7
26	Facile Fabrication of a Hierarchical Superhydrophobic Coating with Aluminate Coupling Agent Modified Kaolin. Journal of Nanomaterials, 2013, 2013, 1-5.	2.7	6
27	Desulfurization of model FCC gasoline by extraction with ionic liquid and conventional extraction solvents. Petroleum Science and Technology, 2017, 35, 1699-1705.	1.5	6
28	A dry separation technique for improving the quality of coking coal middlings. International Journal of Coal Preparation and Utilization, 2020, 40, 175-185.	2.1	6
29	Tuning Rheological Behaviors of Supramolecular Aqueous Gels via Charge Transfer Interactions. Langmuir, 2021, 37, 14713-14723.	3.5	5
30	Novel antibacterial composite of coal/LLDPE loaded with silver ions. Journal of Applied Polymer Science, 2007, 105, 1559-1565.	2.6	4
31	Influence of microwave treatment under a hydrogen or methane atmosphere on the flotability of the macerals in Shenfu coals. Mining Science and Technology, 2011, 21, 761-766.	0.3	4
32	Preparation of graphene from Taixi anthracite and its photocatalyst performance for CO ₂ conversion. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2014, 228, 61-64.	0.1	4
33	Air impact pulverization–precise classification process to support ultraclean coal production. Powder Technology, 2017, 318, 231-241.	4.2	2
34	Synthesis of Novel Phenyl Porous Organic Polymers and Their Excellent Visible Light Photocatalytic Performance on Antibiotics. Materials, 2019, 12, 3296.	2.9	2
35	Hydroisomerization with a Hierarchical SAPOâ€11 Supported Ni Catalyst: Effect of DTAB Content[]**. ChemistrySelect, 2021, 6, 11528-11536.	1.5	2
36	In-situ modification in ultrafine crushing process of Taixi ultralow ash anthracite. Powder Technology, 2016, 295, 315-321.	4.2	1