Jiuzhen Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8861694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-rank decomposition fabric defect detection based on prior and total variation regularization. Visual Computer, 2022, 38, 2707-2721.	3.5	5
2	Segmentation and Recognition Model for Complex Action Sequences. IEEE Sensors Journal, 2022, 22, 4347-4358.	4.7	1
3	Human action recognition based on enhanced data guidance and key node spatial temporal graph convolution. Multimedia Tools and Applications, 2022, 81, 8349-8366.	3.9	7
4	Fabric defect detection via low-rank decomposition with gradient information and structured graph algorithm. Information Sciences, 2021, 546, 608-626.	6.9	29
5	An Evaluation Strategy for the Symmetry and Consistency of Lower Limb Segments During Upper Limb Loading. IEEE Sensors Journal, 2021, 21, 6440-6449.	4.7	4
6	A probabilistic collaborative dictionary learningâ€based approach for face recognition. IET Image Processing, 2021, 15, 868-884.	2.5	4
7	Face alignment based on fusion subspace and 3D fitting. IET Image Processing, 2021, 15, 16-27.	2.5	6
8	Fabric Defect Detection Based on Illumination Correction and Visual Salient Features. Sensors, 2020, 20, 5147.	3.8	5
9	Integrally Cooperative Spatio-Temporal Feature Representation of Motion Joints for Action Recognition. Sensors, 2020, 20, 5180.	3.8	10
10	Unconstrained Face Identification Based on 3D Face Frontalization and Support Vector Guided Dictionary Learning. Mathematical Problems in Engineering, 2020, 2020, 1-16.	1.1	0
11	Human action recognition based on 3D body mask and depth spatial-temporal maps. Multimedia Tools and Applications, 2020, 79, 35761-35778.	3.9	9
12	Depth Sequential Information Entropy Maps and Multi-Label Subspace Learning for Human Action Recognition. IEEE Access, 2020, 8, 135118-135130.	4.2	17
13	Fabric Defect Detection via Low-Rank Decomposition With Gradient Information. IEEE Access, 2019, 7, 130423-130437.	4.2	12
14	Action recognition using weighted fusion of depth images and skeleton's key frames. Multimedia Tools and Applications, 2019, 78, 25063-25078.	3.9	9
15	Weighted similarity and distance metric learning for unconstrained face verification with 3D frontalisation. IET Image Processing, 2019, 13, 399-408.	2.5	3
16	Defect inspection research on fabric based on template correction and primitive decomposition. IET Image Processing, 2019, 13, 2916-2928.	2.5	3
17	Efficient numerical schemes for Chan-Vese active contour models in image segmentation. Multimedia Tools and Applications, 2018, 77, 16661-16684.	3.9	3
18	Adaptive face representation via class-specific and intra-class variation dictionaries for recognition. Multimedia Tools and Applications, 2018, 77, 14783-14802.	3.9	1

JIUZHEN LIANG

#	Article	IF	CITATIONS
19	Predicting Sales Performance Based on Polarity Sentiments of Online Reviews and Manifold Dynamics Method. , 2018, , .		0
20	Fabric Defect Detection Based on Pattern Template Correction. Mathematical Problems in Engineering, 2018, 2018, 1-17.	1.1	18
21	Fabric defect inspection based on lattice segmentation and Gabor filtering. Neurocomputing, 2017, 238, 84-102.	5.9	82
22	Fabric defect inspection based on isotropic lattice segmentation. Journal of the Franklin Institute, 2017, 354, 5694-5738.	3.4	17
23	Learning arbitrary-shape object detector from bounding-box annotation by searching region-graph. Pattern Recognition Letters, 2017, 87, 171-176.	4.2	3
24	Bilateral Two-Dimensional Neighborhood Preserving Discriminant Embedding for Face Recognition. IEEE Access, 2017, 5, 17201-17212.	4.2	13
25	Supervised bilateral two-dimensional locality preserving projection algorithm based on Gabor wavelet. Signal, Image and Video Processing, 2016, 10, 1441-1448.	2.7	11
26	Implementing Dense Optical Flow Computation on a Heterogeneous FPGA SoC in C. Transactions on Architecture and Code Optimization, 2016, 13, 1-25.	2.0	11
27	Combinations of nonstandard finite difference schemes and composition methods with complex time steps for population models. International Journal of Biomathematics, 2016, 09, 1650049.	2.9	0
28	A cue integration method for anaglyph image partition. International Journal of Machine Learning and Cybernetics, 2016, 7, 983-993.	3.6	0
29	Digital Contour Segmentation Based on Statistical Straightness. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2016, 9, 295-310.	0.2	0
30	An efficient face classification method based on shared and class-specific dictionary learning. , 2015, , .		2
31	Implementation of Steiner Point of Fuzzy Set. Scientific World Journal, The, 2014, 2014, 1-8.	2.1	0
32	Human facial expression analysis based on image granule LPP. International Journal of Machine Learning and Cybernetics, 2014, 5, 907-921.	3.6	4
33	Different lighting processing and feature extraction methods for efficient face recognition. IET Image Processing, 2014, 8, 528-538.	2.5	10
34	Image Coverage Segmentation Based on Soft Boundaries. Lecture Notes in Computer Science, 2014, , 374-381.	1.3	0
35	Stock Prediction Based on Phase Space Reconstruction and Echo State Networks. Journal of Algorithms and Computational Technology, 2013, 7, 87-100.	0.7	12
36	Background modeling using Local Binary Patterns Of Motion Vector. , 2012, , .		7

JIUZHEN LIANG

#	Article	IF	CITATIONS
37	Clustering based on Steiner points. International Journal of Machine Learning and Cybernetics, 2012, 3, 141-148.	3.6	17
38	Stock Price Prediction Based on Procedural Neural Networks. Advances in Artificial Neural Systems, 2011, 2011, 1-11.	1.0	9
39	Different Representations of Fuzzy Vectors. Lecture Notes in Computer Science, 2009, , 700-711.	1.3	5
40	Procedural Neural Network Based on Statistical Features. , 2007, , .		0
41	Hierarchical Clustering Algorithm Based on Granularity. , 2007, , .		2
42	Implementation of Calculating Steiner Point for 2-D Objects. , 2007, , .		1
43	Support Function Machines. , 2007, , 1-9.		0
44	Hierarchical Clustering Algorithm Based on Granularity. , 2007, , .		0
45	Worm Harm Prediction Based on Segment Procedure Neural Networks. Lecture Notes in Computer Science, 2006, , 383-388.	1.3	2
46	Segment procedure neural networks. , 2005, , .		2
47	On Chinese Web Page Classification. Lecture Notes in Computer Science, 2004, , 634-639.	1.3	0
48	Granular computing model based on ontology. , 0, , .		1