
Mona O Mohsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8861504/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular definition of severe acute respiratory syndrome coronavirus 2 receptorâ€binding domain mutations: Receptor affinity versus neutralization of receptor interaction. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 143-149.	2.7	26
2	In vitro data suggest that Indian delta variant B.1.617 of SARSâ€CoVâ€⊋ escapes neutralization by both receptor affinity and immune evasion. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 111-117.	2.7	69
3	A scalable and highly immunogenic virusâ€like particleâ€based vaccine against SARSâ€CoVâ€2. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 243-257.	2.7	35
4	Bedside formulation of a personalized multi-neoantigen vaccine against mammary carcinoma. , 2022, 10, e002927.		14
5	Emerging COVID-19 variants and their impact on SARS-CoV-2 diagnosis, therapeutics and vaccines. Annals of Medicine, 2022, 54, 524-540.	1.5	225
6	Induction of Broadly Cross-Reactive Antibodies by Displaying Receptor Binding Domains of SARS-CoV-2 on Virus-like Particles. Vaccines, 2022, 10, 307.	2.1	4
7	Intranasal administration of a virus like particlesâ€based vaccine induces neutralizing antibodies against SARS oVâ€2 and variants of concern. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 2446-2458.	2.7	14
8	Increased Receptor Affinity and Reduced Recognition by Specific Antibodies Contribute to Immune Escape of SARS-CoV-2 Variant Omicron. Vaccines, 2022, 10, 743.	2.1	11
9	Increased receptor affinity of SARS-CoV-2: a new immune escape mechanism. Npj Vaccines, 2022, 7, .	2.9	6
10	SARS-CoV-2 structural features may explain limited neutralizing-antibody responses. Npj Vaccines, 2021, 6, 2.	2.9	48
11	The impact of size on particle drainage dynamics and antibody response. Journal of Controlled Release, 2021, 331, 296-308.	4.8	27
12	On Iron Metabolism and Its Regulation. International Journal of Molecular Sciences, 2021, 22, 4591.	1.8	141
13	Development of a Vaccine against SARS-CoV-2 Based on the Receptor-Binding Domain Displayed on Virus-Like Particles. Vaccines, 2021, 9, 395.	2.1	32
14	AP205 VLPs Based on Dimerized Capsid Proteins Accommodate RBM Domain of SARS-CoV-2 and Serve as an Attractive Vaccine Candidate. Vaccines, 2021, 9, 403.	2.1	25
15	BNT162b2 mRNA COVIDâ€19 vaccine induces antibodies of broader crossâ€reactivity than natural infection, but recognition of mutant viruses is up to 10â€fold reduced. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2895-2998.	2.7	29
16	Neutralization of MERS coronavirus through a scalable nanoparticle vaccine. Npj Vaccines, 2021, 6, 107.	2.9	12
17	A Novel Double Mosaic Virus-like Particle-Based Vaccine against SARS-CoV-2 Incorporates Both Receptor Binding Motif (RBM) and Fusion Domain. Vaccines, 2021, 9, 1287.	2.1	10
18	Anti-IAPP Monoclonal Antibody Improves Clinical Symptoms in a Mouse Model of Type 2 Diabetes. Vaccines, 2021, 9, 1316.	2.1	6

Mona O Mohsen

#	Article	IF	CITATIONS
19	TLR7 Signaling Shapes and Maintains Antibody Diversity Upon Virus-Like Particle Immunization. Frontiers in Immunology, 2021, 12, 827256.	2.2	11
20	Virusâ€like particles for vaccination against cancer. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1579.	3.3	74
21	Murine CD8 T ell functional avidity is stable in vivo but not in vitro: Independence from homologous prime/boost time interval and antigen density. European Journal of Immunology, 2020, 50, 505-514.	1.6	6
22	Shaping Modern Vaccines: Adjuvant Systems Using MicroCrystalline Tyrosine (MCT®). Frontiers in Immunology, 2020, 11, 594911.	2.2	12
23	The <i>3Ds</i> in virusâ€like particle basedâ€vaccines: " <i>Design, Delivery and Dynamics</i> â€. Immunological Reviews, 2020, 296, 155-168.	2.8	57
24	Vaccination against Allergy: A Paradigm Shift?. Trends in Molecular Medicine, 2020, 26, 357-368.	3.5	24
25	Cover Image, Volume 12, Issue 1. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1610.	3.3	0
26	Early Transcriptional Signature in Dendritic Cells and the Induction of Protective T Cell Responses Upon Immunization With VLPs Containing TLR Ligands—A Role for CCL2. Frontiers in Immunology, 2019, 10, 1679.	2.2	10
27	Zika Virus-Derived E-DIII Protein Displayed on Immunologically Optimized VLPs Induces Neutralizing Antibodies without Causing Enhancement of Dengue Virus Infection. Vaccines, 2019, 7, 72.	2.1	33
28	Culpability, blame, and stigma after pregnancy loss in Qatar. BMC Pregnancy and Childbirth, 2019, 19, 215.	0.9	9
29	Targeting Mutated Plus Germline Epitopes Confers Pre-clinical Efficacy of an Instantly Formulated Cancer Nano-Vaccine. Frontiers in Immunology, 2019, 10, 1015.	2.2	39
30	Vaccination with nanoparticles combined with micro-adjuvants protects against cancer. , 2019, 7, 114.		41
31	DOPS Adjuvant Confers Enhanced Protection against Malaria for VLP-TRAP Based Vaccines. Diseases (Basel, Switzerland), 2018, 6, 107.	1.0	7
32	Interaction of Viral Capsid-Derived Virus-Like Particles (VLPs) with the Innate Immune System. Vaccines, 2018, 6, 37.	2.1	113
33	Virus-like particles (VLP) in prophylaxis and immunotherapy of allergic diseases. Allergo Journal International, 2018, 27, 245-255.	0.9	38
34	Delivering adjuvants and antigens in separate nanoparticles eliminates the need of physical linkage for effective vaccination. Journal of Controlled Release, 2017, 251, 92-100.	4.8	69
35	Major findings and recent advances in virus–like particle (VLP)-based vaccines. Seminars in Immunology, 2017, 34, 123-132.	2.7	375
36	Harnessing Nanoparticles for Immunomodulation and Vaccines. Vaccines, 2017, 5, 6.	2.1	113

Mona O Mohsen

#	Article	IF	CITATIONS
37	Virus-Like Particle (VLP) Plus Microcrystalline Tyrosine (MCT) Adjuvants Enhance Vaccine Efficacy Improving T and B Cell Immunogenicity and Protection against Plasmodium berghei/vivax. Vaccines, 2017, 5, 10.	2.1	28
38	Microcrystalline Tyrosine (MCT®): A Depot Adjuvant in Licensed Allergy Immunotherapy Offers New Opportunities in Malaria. Vaccines, 2017, 5, 32.	2.1	15
39	New 3-Cyano-2-Substituted Pyridines Induce Apoptosis in MCF 7 Breast Cancer Cells. Molecules, 2016, 21, 230.	1.7	30
40	Virus-Like Particles Are Efficient Tools for Boosting mRNA-Induced Antibodies. Frontiers in Immunology, 0, 13, .	2.2	8