Ekaterina Lokteva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8861304/publications.pdf

Version: 2024-02-01

471509 610901 65 825 17 24 citations h-index g-index papers 65 65 65 550 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Catalytic hydrodehalogenation of organic compounds. Russian Chemical Bulletin, 1996, 45, 1519-1534.	1.5	56
2	Metal-support interactions in the design of heterogeneous catalysts for redox processes. Pure and Applied Chemistry, 2019, 91, 609-631.	1.9	39
3	Template Synthesis of Porous Ceria-Based Catalysts for Environmental Application. Molecules, 2020, 25, 4242.	3.8	37
4	Modification of the supported palladium catalysts surface during hydrodechlorination of carbon tetrachloride. Applied Catalysis A: General, 2003, 241, 123-132.	4.3	35
5	Efficiency of manganese modified CTAB-templated ceria-zirconia catalysts in total CO oxidation. Applied Surface Science, 2019, 485, 432-440.	6.1	33
6	High catalytic activity and stability of palladium nanoparticles prepared by the laser electrodispersion method in chlorobenzene hydrodechlorination. Kinetics and Catalysis, 2008, 49, 748-755.	1.0	30
7	The hydrodechlorination of chlorobenzene in the vapor phase in the presence of metal-carbon nanocomposites based on nickel, palladium, and iron. Russian Journal of Physical Chemistry A, 2009, 83, 1300-1306.	0.6	28
8	Laser electrodispersion as a new chlorine-free method for the production of highly effective metal-containing supported catalysts. Pure and Applied Chemistry, 2012, 84, 495-508.	1.9	26
9	Hydrogen Dissociation Catalyzed by Carbonâ€Coated Nickel Nanoparticles: Experiment and Theory. ChemPhysChem, 2013, 14, 381-385.	2.1	26
10	Palladium on ultradisperse diamond and activated carbon: the relation between structure and activity in hydrodechlorination. Russian Journal of Physical Chemistry A, 2007, 81, 866-873.	0.6	24
11	Hydrodechlorination of chlorobenzene in the presence of Ni/Al2O3 prepared by laser electrodispersion and from a colloidal dispersion. Kinetics and Catalysis, 2013, 54, 597-606.	1.0	22
12	Regeneration of Pd/TiO2 catalyst deactivated in reductive CCl4 transformations by the treatment with supercritical CO2, ozone in supercritical CO2 or oxygen plasma. Journal of Supercritical Fluids, 2011, 58, 263-271.	3.2	21
13	The synthesis, structure, and properties of carbon-containing nanocomposites based on nickel, palladium, and iron. Russian Journal of Physical Chemistry A, 2009, 83, 1187-1193.	0.6	20
14	TEM and XRD investigation of Pd on ultradispersed diamond, correlation with catalytic activity. Mendeleev Communications, 2009, 19, 133-135.	1.6	19
15	Ultradispersed diamond as a new carbon support for hydrodechlorination catalysts. Kinetics and Catalysis, 2011, 52, 145-155.	1.0	18
16	C-C bond formation during hydrodechlorination of CCl4 on Pd-containing catalysts. Studies in Surface Science and Catalysis, 2000, 130, 1997-2002.	1.5	17
17	Formation of C1–C5 Hydrocarbons from CCl4 in the Presence of Carbon-Supported Palladium Catalysts. Kinetics and Catalysis, 2000, 41, 776-781.	1.0	17
18	Adsorption and oxidation of carbon monoxide on Au and Ni nanoparticles deposited on Al2O3 by laser electrodispersion. Russian Chemical Bulletin, 2015, 64, 812-818.	1.5	16

#	Article	IF	Citations
19	Application of Au–Cu nanowires fabricated by laser ablation in superfluid helium as catalysts for CO oxidation. Gold Bulletin, 2015, 48, 119-125.	2.4	16
20	Hydrodechlorination of Tetrachloromethane in the Vapor Phase in the Presence of Pd–Fe/Sibunit Catalysts. Kinetics and Catalysis, 2004, 45, 183-188.	1.0	15
21	Catalysis of carbon monoxide oxidation with oxygen in the presence of palladium nanowires and nanoparticles. High Energy Chemistry, 2016, 50, 292-297.	0.9	15
22	Surface density of particles in the design of nanostructured catalysts. Theoretical and Experimental Chemistry, 2013, 49, 40-45.	0.8	14
23	Synthesis of polychlorovinylenes as active conjugated polymers and their application for low-temperature formation of carbon structures. Russian Chemical Bulletin, 2015, 64, 2919-2921.	1.5	14
24	Chlorobenzene hydrodechlorination catalyst prepared via the pyrolysis of sawdust impregnated with palladium nitrate. Kinetics and Catalysis, 2015, 56, 764-773.	1.0	14
25	Chlorobenzene hydrodechlorination on bimetallic catalysts prepared by laser electrodispersion of NiPd alloy. Pure and Applied Chemistry, 2018, 90, 1685-1701.	1.9	14
26	Sawdust as an effective biotemplate for the synthesis of Ce _{0.8} Zr _{0.2} O ₂ and CuO–Ce _{0.8} Zr _{0.2} O ₂ catalysts for total CO oxidation. RSC Advances, 2017, 7, 51359-51372.	3.6	13
27	Selective hydrogenation of phenylacetylene on Ni and Ni-Pd catalysts modified with heteropoly compounds of the Keggin type. Russian Journal of Physical Chemistry A, 2012, 86, 1800-1807.	0.6	12
28	Interaction of amorphous and crystalline nickel nanoparticles with hydrogen. Russian Chemical Bulletin, 2015, 64, 2337-2343.	1.5	12
29	Bimetallic Nanostructured Catalysts Prepared by Laser Electrodispersion: Structure and Activity in Redox Reactions. ChemCatChem, 2020, 12, 4396-4405.	3.7	12
30	Ceria-silica mesoporous catalysts for CO preferential oxidation in H2-rich stream: The effect of Ce:Si ratio and copper modification. Applied Surface Science, 2022, 594, 153473.	6.1	12
31	Nickel-supported metal-carbon nanocomposites: New catalysts of hydrogenation of phenylacetylene. Russian Journal of Physical Chemistry A, 2014, 88, 12-16.	0.6	11
32	Adsorption of hydrogen on nickel nanoparticles with different crystallinity. Nanotechnologies in Russia, 2015, 10, 850-857.	0.7	11
33	Laser Electrodispersion of Metals for the Synthesis of Nanostructured Catalysts: Achievements and Prospects. Russian Journal of Physical Chemistry A, 2021, 95, 451-474.	0.6	11
34	Promoting effect of potassium and calcium additives to ceriumâ€"zirconium oxide catalysts for the complete oxidation of carbon monoxide. Kinetics and Catalysis, 2017, 58, 585-592.	1.0	10
35	Two-Stage Ozonation – Adsorption Purification of Ground Water from Trichloroethylene and Tetrachloroethylene with Application of Commercial Carbon Adsorbents. Ozone: Science and Engineering, 2020, 42, 357-370.	2.5	10
36	Heterogeneous catalysts and process for reductive dechlorination of polychlorinated hydrocarbons. Pure and Applied Chemistry, 2007, 79, 1905-1914.	1.9	9

#	Article	IF	CITATIONS
37	Peculiarities of the structure and catalytic behavior of nanostructured Ni catalysts prepared by laser electrodispersion. Nanotechnologies in Russia, 2017, 12, 19-26.	0.7	9
38	ZrO2-Al2O3 binary oxides as promising supports for palladium catalysts of hydrodechlorination. Russian Journal of Physical Chemistry A, 2011, 85, 402-407.	0.6	8
39	Hydrodechlorination of chlorobenzene on Ni and Ni-Pd catalysts modified by heteropolycompounds of the Keggin type. Russian Journal of Physical Chemistry A, 2012, 86, 1669-1675.	0.6	8
40	Templated Synthesis of Copper Modified Tin-Doped Ceria for Catalytic CO Oxidation. Topics in Catalysis, 2020, 63, 86-98.	2.8	8
41	Catalytic properties of Ce x Zr1–x O2 prepared using a template in the oxidation of CO. Russian Journal of Physical Chemistry A, 2016, 90, 2157-2164.	0.6	7
42	How to motivate students to use green chemistry approaches in everyday research work: Lomonosov Moscow State University, Russia. Current Opinion in Green and Sustainable Chemistry, 2018, 13, 81-85.	5.9	7
43	Hydrodehalogenation of 4-chlorophenol and 4-bromophenol over Pd–Fe/Al2O3: influence of catalyst reduction conditions. Mendeleev Communications, 2022, 32, 249-252.	1.6	7
44	Development and design of Pd-containing supported catalysts for hydrodechlorination. Studies in Surface Science and Catalysis, 2010, , 293-296.	1.5	6
45	Effect of Calcination Temperature on the Efficiency of Ni/Al2O3 in the Hydrodechlorination Reaction. Kinetics and Catalysis, 2020, 61, 444-459.	1.0	6
46	New catalysts for the environmentally friendly processing of chlorinated organics. Catalysis in Industry, 2009, 1, 214-219.	0.7	5
47	Effect of hydrothermal treatment on the physicochemical characteristics of Pd/C composites prepared via pyrolysis of sawdust impregnated with palladium nitrate. Russian Chemical Bulletin, 2016, 65, 2618-2627.	1.5	5
48	Quasi-1D Metals (Pd, Pt, Nb) as Catalysts for Oxidation of CO. Theoretical and Experimental Chemistry, 2016, 52, 75-84.	0.8	5
49	Carbon-Supported Palladium–Cobalt Catalysts in Chlorobenzene Hydrodechlorination. Russian Journal of Physical Chemistry A, 2019, 93, 1986-2002.	0.6	5
50	Effect of MnO _{<i>x</i>} modification and template type on the catalytic performance of ceria-zirconia in CO and soot oxidation. Pure and Applied Chemistry, 2021, 93, 447-462.	1.9	5
51	Hydrodechlorination of 4-Chlorophenol on Pd-Fe Catalysts on Mesoporous ZrO2SiO2 Support. Molecules, 2021, 26, 141.	3.8	5
52	Gas-Phase Hydrodechlorination of Chlorobenzene over Alumina-Supported Nickel Catalysts: Effect of Support Structure and Modification with Heteropoly Acid HSiW. Kinetics and Catalysis, 2021, 62, 127-145.	1.0	4
53	Metal-carbon nanocomposite systems as stable and active catalysts for chlorobenzene transformations. Studies in Surface Science and Catalysis, 2010, 175, 289-292.	1.5	2
54	Catalysts based on PdO_ZrO2 in the hydrodechlorination reaction of chlorobenzene. Russian Journal of Physical Chemistry A, 2015, 89, 1163-1172.	0.6	2

#	Article	IF	CITATIONS
55	Disposal of Chlorine-Containing Wastes. , 2016, , 559-584.		2
56	Ozone-adsorption Method of TRIC and PERC Elimination from Underground Water Corresponding to the Russian Maximum Permissible Concentration Standards. Ozone: Science and Engineering, 2016, 38, 302-311.	2.5	2
57	Multiphase Hydrodechlorination of 1,3,5-Trichlorobenzene on Palladium Catalysts Supported on Alumina: Effect of the Support Properties and Modification by Heteropoly Acid Based on Silicon and Tungsten. Kinetics and Catalysis, 2019, 60, 297-314.	1.0	2
58	Advanced Size-Selected Catalysts Prepared by Laser Electrodispersion., 2019,, 61-97.		2
59	Modification of Ni/Al2O3 catalyst with Pd nanoparticles for selective phenylacetylene semihydrodenation. Reaction Kinetics, Mechanisms and Catalysis, 2020, 129, 883-898.	1.7	2
60	Optimization of acidic treatment of bentonitic clays from the national layers. Moscow University Chemistry Bulletin, 2010, 65, 57-61.	0.6	1
61	Formation of Active Centers of Nickel–Zinc Catalysts Deposited on the Nanodiamond for the Selective Hydrogenation of Phenylacetylene. Russian Journal of Physical Chemistry A, 2021, 95, 492-502.	0.6	1
62	Crystal and molecular structure of 3,3,7,7-tetrachloro-and 3,7-dichlorotricyclo [4.1.0.02,4] heptane. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1988, 37, 671-674.	0.0	O
63	Rhodium catalysts in the hydrodechlorination of 3,3,7,7-tetrachlorotricyclo [4.1.0.0] pentane [2, 4]. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1989, 38, 473-476.	0.0	O
64	EuropaCat XII: Catalysis for chemical synthesis. Catalysis Today, 2017, 279, 1.	4.4	0
65	State-of-the-art of computational green chemistry in leading universities in Russia., 2022,, 55-77.		O