
Rumiana V Ray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8861126/publications.pdf Version: 2024-02-01

Ριιμιανία V Ραν

#	Article	IF	CITATIONS
1	Population dynamics of <i>Rhizoctonia</i> , <i>Oculimacula</i> , and <i>Microdochium</i> species in soil, roots, and stems of English wheat crops. Plant Pathology, 2021, 70, 862-874.	2.4	5
2	Yield Losses and Control by Sedaxane and Fludioxonil of Soilborne <i>Rhizoctonia</i> , <i>Microdochium</i> , and <i>Fusarium</i> Species in Winter Wheat. Plant Disease, 2021, 105, 2521-2530.	1.4	10
3	The role of photoprotection in defence of two wheat genotypes against <i>Zymoseptoria tritici</i> . Plant Pathology, 2021, 70, 1421-1435.	2.4	5
4	Distinct branches of the Nâ€end rule pathway modulate the plant immune response. New Phytologist, 2019, 221, 988-1000.	7.3	59
5	The Arabidopsis thaliana Nâ€recognin E3 ligase PROTEOLYSIS1 influences the immune response. Plant Direct, 2019, 3, e00194.	1.9	12
6	Infestation by Myzus persicae Increases Susceptibility of Brassica napus cv. "Canard―to Rhizoctonia solani AG 2-1. Frontiers in Plant Science, 2018, 9, 1903.	3.6	2
7	Chlorophyll Fluorescence on the Fast Timescale. Methods in Molecular Biology, 2018, 1770, 95-104.	0.9	1
8	Canopy and Ear Traits Associated With Avoidance of Fusarium Head Blight in Wheat. Frontiers in Plant Science, 2018, 9, 1021.	3.6	15
9	Direct and hostâ€mediated interactions between <i>Fusarium</i> pathogens and herbivorous arthropods in cereals. Plant Pathology, 2017, 66, 3-13.	2.4	22
10	Development of high-throughput methods to screen disease caused by Rhizoctonia solani AG 2-1 in oilseed rape. Plant Methods, 2017, 13, 45.	4.3	19
11	Altered gene expression by sedaxane increases PSII efficiency, photosynthesis and growth and improves tolerance to drought in wheat seedlings. Pesticide Biochemistry and Physiology, 2017, 137, 49-61.	3.6	21
12	Contrasting Roles of Deoxynivalenol and Nivalenol in Host-Mediated Interactions between Fusarium graminearum and Sitobion avenae. Toxins, 2016, 8, 353.	3.4	14
13	Identification of novel quantitative trait loci for resistance to Fusarium seedling blight caused by Microdochium majus and M. nivale in wheat. Field Crops Research, 2016, 191, 1-12.	5.1	4
14	Aphid Infestation Increases Fusarium langsethiae and T-2 and HT-2 Mycotoxins in Wheat. Applied and Environmental Microbiology, 2016, 82, 6548-6556.	3.1	13
15	Genetic diversity and population structure of core watermelon (<i>Citrullus lanatus</i>) genotypes using DArTseq-based SNPs. Plant Genetic Resources: Characterisation and Utilisation, 2016, 14, 226-233.	0.8	37
16	Chlorophyll fluorescence parameters allow the rapid detection and differentiation of plant responses in three different wheat pathosystems. Functional Plant Biology, 2016, 43, 356.	2.1	33
17	Effects of damping-off caused by Rhizoctonia solani anastomosis group 2-1 on roots of wheat and oil seed rape quantified using X-ray Computed Tomography and real-time PCR. Frontiers in Plant Science, 2015, 6, 461.	3.6	49
18	Comparative aggressiveness of Microdochium nivale and M. majus and evaluation of screening methods for Fusarium seedling blight resistance in wheat cultivars. European Journal of Plant Pathology, 2015, 141, 281-294.	1.7	29

Rumiana V Ray

#	Article	IF	CITATIONS
19	Construction of a high-density DArTseq SNP-based genetic map and identification of genomic regions with segregation distortion in a genetic population derived from a cross between feral and cultivated-type watermelon. Molecular Genetics and Genomics, 2015, 290, 1457-1470.	2.1	119
20	Sharing a Host Plant (Wheat [Triticum aestivum]) Increases the Fitness of Fusarium graminearum and the Severity of Fusarium Head Blight but Reduces the Fitness of Grain Aphids (Sitobion avenae). Applied and Environmental Microbiology, 2015, 81, 3492-3501.	3.1	40
21	Foliar application of isopyrazam and epoxiconazole improves photosystem II efficiency, biomass and yield in winter wheat. Pesticide Biochemistry and Physiology, 2014, 114, 52-60.	3.6	37
22	The prevalence and impact of Fusarium head blight pathogens and mycotoxins on malting barley quality in UK. International Journal of Food Microbiology, 2014, 179, 38-49.	4.7	92
23	<i>Fusarium langsethiae</i> – a <scp>HT</scp> â€2 and <scp>T</scp> â€2 Toxins Producer that Needs More Attention. Journal of Phytopathology, 2013, 161, 1-10.	1.0	52
24	A Survey Investigating the Infection of <i>Fusarium langsethiae</i> and Production of <scp>HT</scp> â€2 and Tâ€2 Mycotoxins in <scp>UK</scp> Oat Fields. Journal of Phytopathology, 2013, 161, 553-561.	1.0	21
25	Molecular studies to identify the Fusarium species responsible for HT-2 and T-2 mycotoxins in UK oats. International Journal of Food Microbiology, 2012, 156, 168-175.	4.7	80
26	Evaluation of pathogenicity and aggressiveness of F. langsethiae on oat and wheat seedlings relative to known seedling blight pathogens. European Journal of Plant Pathology, 2010, 126, 203-216.	1.7	33
27	Fusarium langsethiae pathogenicity and aggressiveness towards oats and wheat in wounded and unwounded in vitro detached leaf assays. European Journal of Plant Pathology, 2009, 124, 117-126.	1.7	46
28	Effect of eyespot caused by Oculimacula yallundae and O. acuformis, assessed visually and by competitive PCR, on stem strength associated with lodging resistance and yield of winter wheat. Journal of Experimental Botany, 2006, 57, 2249-2257.	4.8	22