Mu-Sheng Zeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8860855/publications.pdf

Version: 2024-02-01

87843 88593 5,856 119 38 citations h-index papers

g-index 129 129 129 8071 docs citations times ranked citing authors all docs

70

#	Article	IF	CITATIONS
1	Epstein-Barr Virus LMP1-Activated mTORC1 and mTORC2 Coordinately Promote Nasopharyngeal Cancer Stem Cell Properties. Journal of Virology, 2022, 96, jvi0194121.	1.5	5
2	Parallel profiling of antigenicity alteration and immune escape of SARS-CoV-2 Omicron and other variants. Signal Transduction and Targeted Therapy, 2022, 7, 42.	7.1	25
3	A Neutralizing Antibody Targeting gH Provides Potent Protection against EBV Challenge <i>In Vivo</i> Journal of Virology, 2022, 96, e0007522.	1.5	8
4	Vesicular Stomatitis Virus-Based Epstein-Barr Virus Vaccines Elicit Strong Protective Immune Responses. Journal of Virology, 2022, 96, e0033622.	1.5	2
5	Quadrivalent mosaic HexaPro-bearing nanoparticle vaccine protects against infection of SARS-CoV-2 variants. Nature Communications, 2022, 13, 2674.	5.8	26
6	A novel model of alternative NF-κB pathway activation in anaplastic large cell lymphoma. Leukemia, 2021, 35, 1976-1989.	3.3	13
7	Clinicopathologic features, tumor immune microenvironment and genomic landscape of Epstein-Barr virus-associated intrahepatic cholangiocarcinoma. Journal of Hepatology, 2021, 74, 838-849.	1.8	53
8	Advances in pathogenesis and precision medicine for nasopharyngeal carcinoma. MedComm, 2021, 2, 175-206.	3.1	24
9	Identification of an N6-methyladenosine-mediated positive feedback loop that promotes Epstein–Barr virus infection. Journal of Biological Chemistry, 2021, 296, 100547.	1.6	20
10	Rapid Development of SARS-CoV-2 Spike Protein Receptor-Binding Domain Self-Assembled Nanoparticle Vaccine Candidates. ACS Nano, 2021, 15, 2738-2752.	7.3	143
11	N(6)â€methyladenosineâ€binding protein YTHDF1 suppresses EBV replication and promotes EBV RNA decay. EMBO Reports, 2021, 22, e50128.	2.0	59
12	Immunization with a Self-Assembled Nanoparticle Vaccine Elicits Potent Neutralizing Antibody Responses against EBV Infection. Nano Letters, 2021, 21, 2476-2486.	4.5	14
13	T Cell Epitope Screening of Epstein-Barr Virus Fusion Protein gB. Journal of Virology, 2021, 95, .	1.5	5
14	The Status and Prospects of Epstein–Barr Virus Prophylactic Vaccine Development. Frontiers in Immunology, 2021, 12, 677027.	2.2	23
15	PD-1 ⁺ CXCR5 ^{â^²} CD4 ⁺ Th-CXCL13 cell subset drives B cells into tertiary lymphoid structures of nasopharyngeal carcinoma., 2021, 9, e002101.		30
16	EBV latent membrane proteins promote hybrid epithelial-mesenchymal and extreme mesenchymal states of nasopharyngeal carcinoma cells for tumorigenicity. PLoS Pathogens, 2021, 17, e1009873.	2.1	13
17	The genomic architecture of EBV and infected gastric tissue from precursor lesions to carcinoma. Genome Medicine, 2021, 13, 146.	3.6	9
18	A potent and protective human neutralizing antibody targeting a novel vulnerable site of Epstein-Barr virus. Nature Communications, 2021, 12, 6624.	5.8	18

#	Article	IF	Citations
19	ALKATI interacts with c-Myc and promotes cancer stem cell-like properties in sarcoma. Oncogene, 2020, 39, 151-163.	2.6	13
20	Integrin α6-Targeted Magnetic Resonance Imaging of Hepatocellular Carcinoma in Mice. Molecular Imaging and Biology, 2020, 22, 864-872.	1.3	8
21	Autocrine <scp>INSL</scp> 5 promotes tumor progression and glycolysis via activation of <scp>STAT</scp> 5 signaling. EMBO Molecular Medicine, 2020, 12, e12050.	3.3	12
22	Association between Antibody Responses to Epstein-Barr Virus Glycoproteins, Neutralization of Infectivity, and the Risk of Nasopharyngeal Carcinoma. MSphere, 2020, 5, .	1.3	7
23	<p>Upregulation of METTL3 Expression Predicts Poor Prognosis in Patients with Esophageal Squamous Cell Carcinoma</p> . Cancer Management and Research, 2020, Volume 12, 5729-5737.	0.9	26
24	Structure of Epstein-Barr virus tegument protein complex BBRF2-BSRF1 reveals its potential role in viral envelopment. Nature Communications, 2020, 11, 5405.	5.8	11
25	Plasma Epstein-Barr Virus-Deoxyribonucleic Acid Copy Number Predicts Disease Progression in Stage I–III Pulmonary Lymphoepithelioma-Like Carcinoma. Frontiers in Oncology, 2020, 10, 1487.	1.3	3
26	The anti-inflammatory drug dimethyl itaconate protects against colitis-associated colorectal cancer. Journal of Molecular Medicine, 2020, 98, 1457-1466.	1.7	21
27	An optimized integrin α6â€ŧargeted peptide for positron emission tomography/magnetic resonance imaging of pancreatic cancer and its precancerous lesion. Clinical and Translational Medicine, 2020, 10, e157.	1.7	7
28	Single-cell transcriptomic analysis defines the interplay between tumor cells, viral infection, and the microenvironment in nasopharyngeal carcinoma. Cell Research, 2020, 30, 950-965.	5.7	111
29	A novel vaccine candidate based on chimeric virus-like particle displaying multiple conserved epitope peptides induced neutralizing antibodies against EBV infection. Theranostics, 2020, 10, 5704-5718.	4.6	17
30	A method to establish a c-Myc transgenic mouse model of hepatocellular carcinoma. MethodsX, 2020, 7, 100921.	0.7	3
31	Long noncoding RNA AGPG regulates PFKFB3-mediated tumor glycolytic reprogramming. Nature Communications, 2020, 11, 1507.	5.8	121
32	CryoEM structure of the tegumented capsid of Epstein-Barr virus. Cell Research, 2020, 30, 873-884.	5.7	18
33	Epstein–Barr Virus miRNA BART2-5p Promotes Metastasis of Nasopharyngeal Carcinoma by Suppressing RND3. Cancer Research, 2020, 80, 1957-1969.	0.4	26
34	Adaptor protein LNK promotes anaplastic thyroid carcinoma cell growth via 14-3-3 $\hat{l}\mu/\hat{l}^3$ binding. Cancer Cell International, 2020, 20, 11.	1.8	8
35	FAM46B is a prokaryotic-like cytoplasmic poly(A) polymerase essential in human embryonic stem cells. Nucleic Acids Research, 2020, 48, 2733-2748.	6.5	13
36	Significance of Selective Protein Degradation in the Development of Novel Targeted Drugs and Its Implications in Cancer Therapy. Advanced Therapeutics, 2020, 3, 1900210.	1.6	2

3

#	Article	IF	Citations
37	EphA2 phosphorylates <scp>NLRP</scp> 3 and inhibits inflammasomes in airway epithelial cells. EMBO Reports, 2020, 21, e49666.	2.0	25
38	Integrin $\hat{l}\pm 6$ targeted positron emission tomography imaging of hepatocellular carcinoma in mouse models. Journal of Controlled Release, 2019, 310, 11-21.	4.8	24
39	Platelet-secreted CCL3 and its receptor CCR5 promote invasive and migratory abilities of anaplastic thyroid carcinoma cells via MMP-1. Cellular Signalling, 2019, 63, 109363.	1.7	15
40	Clonal Mutations Activate the NF-κB Pathway to Promote Recurrence of Nasopharyngeal Carcinoma. Cancer Research, 2019, 79, 5930-5943.	0.4	32
41	Integrin \hat{l} ±6-Targeted Positron Emission Tomography Imaging of Colorectal Cancer. ACS Omega, 2019, 4, 15560-15566.	1.6	14
42	Genome sequencing analysis identifies Epstein–Barr virus subtypes associated with high risk of nasopharyngeal carcinoma. Nature Genetics, 2019, 51, 1131-1136.	9.4	133
43	Genomic and Transcriptomic Profiling of Combined Hepatocellular and Intrahepatic Cholangiocarcinoma Reveals Distinct Molecular Subtypes. Cancer Cell, 2019, 35, 932-947.e8.	7.7	182
44	Genome-wide CRISPR-based gene knockout screens reveal cellular factors and pathways essential for nasopharyngeal carcinoma. Journal of Biological Chemistry, 2019, 294, 9734-9745.	1.6	12
45	Excessive miR-25-3p maturation via N6-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nature Communications, 2019, 10, 1858.	5.8	242
46	Relationship of circulating tumor cells and Epstein–Barr virus DNA to progressionâ€free survival and overall survival in metastatic nasopharyngeal carcinoma patients. International Journal of Cancer, 2019, 145, 2873-2883.	2.3	38
47	Identification of an Integrin α6â€Targeted Peptide for Nasopharyngeal Carcinomaâ€Specific Nanotherapeutics. Advanced Therapeutics, 2019, 2, 1900018.	1.6	19
48	Lung cancer deficient in the tumor suppressor GATA4 is sensitive to TGFBR1 inhibition. Nature Communications, 2019, 10, 1665.	5.8	45
49	Genome-wide profiling of Epstein-Barr virus integration by targeted sequencing in Epstein-Barr virus associated malignancies. Theranostics, 2019, 9, 1115-1124.	4.6	56
50	EGF-induced nuclear localization of SHCBP1 activates \hat{l}^2 -catenin signaling and promotes cancer progression. Oncogene, 2019, 38, 747-764.	2.6	44
51	The Nedd8â€activating enzyme inhibitor <scp>MLN</scp> 4924 (<scp>TAK</scp> â€924/Pevonedistat) induces apoptosis via câ€Mycâ€Noxa axis in head and neck squamous cell carcinoma. Cell Proliferation, 2019, 52, e12536.	2.4	20
52	Genomic and transcriptomic landscapes of Epstein-Barr virus in extranodal natural killer T-cell lymphoma. Leukemia, 2019, 33, 1451-1462.	3.3	86
53	CRLF1 promotes malignant phenotypes of papillary thyroid carcinoma by activating the MAPK/ERK and PI3K/AKT pathways. Cell Death and Disease, 2018, 9, 371.	2.7	32
54	Ephrin receptor A2 is an epithelial cell receptor for Epstein–Barr virus entry. Nature Microbiology, 2018, 3, 1-8.	5.9	151

#	Article	IF	CITATIONS
55	Structure of Schlafen13 reveals a new class of tRNA/rRNA- targeting RNase engaged in translational control. Nature Communications, 2018, 9, 1165.	5.8	87
56	Bafilomycin A1 increases the sensitivity of tongue squamous cell carcinoma cells to cisplatin by inhibiting the lysosomal uptake of platinum ions but not autophagy. Cancer Letters, 2018, 423, 105-112.	3.2	15
57	The <i>RARS–MAD1L1</i> Fusion Gene Induces Cancer Stem Cell–like Properties and Therapeutic Resistance in Nasopharyngeal Carcinoma. Clinical Cancer Research, 2018, 24, 659-673.	3.2	47
58	Vasculogenic mimicry formation in EBV-associated epithelial malignancies. Nature Communications, 2018, 9, 5009.	5.8	120
59	Identification of a sodium pump Na + $/$ K + ATPase α1-targeted peptide for PET imaging of breast cancer. Journal of Controlled Release, 2018, 281, 178-188.	4.8	23
60	Epstein-Barr virus activates F-box protein FBXO2 to limit viral infectivity by targeting glycoprotein B for degradation. PLoS Pathogens, 2018, 14, e1007208.	2.1	26
61	Patterns of Failure and Survival Trends Of 720 Patients with Stage I Nasopharyngeal Carcinoma Diagnosed from 1990-2012: A Large-scale Retrospective Cohort Study. Journal of Cancer, 2018, 9, 1308-1317.	1.2	11
62	Immunization With Fc-Based Recombinant Epstein–Barr Virus gp350 Elicits Potent Neutralizing Humoral Immune Response in a BALB/c Mice Model. Frontiers in Immunology, 2018, 9, 932.	2.2	31
63	FMNL1 mediates nasopharyngeal carcinoma cell aggressiveness by epigenetically upregulating MTA1. Oncogene, 2018, 37, 6243-6258.	2.6	24
64	Roles of flotillins in tumors. Journal of Zhejiang University: Science B, 2018, 19, 171-182.	1.3	23
65	Pretreatment quality of life as a predictor of survival for patients with nasopharyngeal carcinoma treated with IMRT. BMC Cancer, 2018, 18, 114.	1.1	13
66	The Prognostic Value of Treatment-Related Lymphopenia in Nasopharyngeal Carcinoma Patients. Cancer Research and Treatment, 2018, 50, 19-29.	1.3	56
67	Combination of Tumor Volume and Epstein-Barr Virus DNA Improved Prognostic Stratification of Stage II Nasopharyngeal Carcinoma in the Intensity Modulated Radiotherapy Era: A Large-Scale Cohort Study. Cancer Research and Treatment, 2018, 50, 861-871.	1.3	38
68	Epstein–Barr Virus-Induced VEGF and GM-CSF Drive Nasopharyngeal Carcinoma Metastasis via Recruitment and Activation of Macrophages. Cancer Research, 2017, 77, 3591-3604.	0.4	61
69	Elevated expression of CST1 promotes breast cancer progression and predicts a poor prognosis. Journal of Molecular Medicine, 2017, 95, 873-886.	1.7	79
70	Deep sequencing reveals a global reprogramming of lncRNA transcriptome during EMT. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1703-1713.	1.9	18
71	TRIM29 promotes DNA virus infections by inhibiting innate immune response. Nature Communications, 2017, 8, 945.	5.8	150
72	Genomic comparison of esophageal squamous cell carcinoma and its precursor lesions by multi-region whole-exome sequencing. Nature Communications, 2017, 8, 524.	5.8	103

#	Article	IF	Citations
73	EDB Fibronectin-Specific SPECT Probe ^{99m} Tc-HYNIC-ZD2 for Breast Cancer Detection. ACS Omega, 2017, 2, 2459-2468.	1.6	15
74	Implication of comorbidity on the initiation of chemotherapy and survival outcomes in patients with locoregionally advanced nasopharyngeal carcinoma. Oncotarget, 2017, 8, 10594-10601.	0.8	5
75	High-density lipoprotein cholesterol as a predictor of poor survival in patients with nasopharyngeal carcinoma. Oncotarget, 2016, 7, 42978-42987.	0.8	32
76	RBM24 suppresses cancer progression by upregulating miR-25 to target MALAT1 in nasopharyngeal carcinoma. Cell Death and Disease, 2016, 7, e2352-e2352.	2.7	58
77	With or without reirradiation in advanced local recurrent nasopharyngeal carcinoma: a case–control study. BMC Cancer, 2016, 16, 774.	1.1	17
78	Comprehensive profiling of EBV gene expression in nasopharyngeal carcinoma through paired-end transcriptome sequencing. Frontiers of Medicine, 2016, 10, 61-75.	1.5	49
79	Establishment and Validation of Prognostic Nomograms for Endemic Nasopharyngeal Carcinoma. Journal of the National Cancer Institute, 2016, 108, djv291.	3.0	281
80	Plasma Epstein-Barr viral DNA complements TNM classification of nasopharyngeal carcinoma in the era of intensity-modulated radiotherapy. Oncotarget, 2016, 7, 6221-6230.	0.8	37
81	ISG15 predicts poor prognosis and promotes cancer stem cell phenotype in nasopharyngeal carcinoma. Oncotarget, 2016, 7, 16910-16922.	0.8	54
82	Epstein-Barr virus glycoprotein gH/gL antibodies complement IgA -viral capsid antigen for diagnosis of nasopharyngeal carcinoma. Oncotarget, 2016, 7, 16372-16383.	0.8	7
83	Prognostic value of wait time in nasopharyngeal carcinoma treated with intensity modulated radiotherapy: a propensitymatched analysis. Oncotarget, 2016, 7, 14973-14982.	0.8	21
84	Prognostic effect of pregnancy on young female patients with nasopharyngeal carcinoma: results from a matched cohort analysis. Oncotarget, 2016, 7, 21913-21921.	0.8	4
85	ZNF488 Enhances the Invasion and Tumorigenesis in Nasopharyngeal Carcinoma Via the Wnt Signaling Pathway Involving Epithelial Mesenchymal Transition. Cancer Research and Treatment, 2016, 48, 334-344.	1.3	27
86	Neoadjuvant chemotherapy in locally advanced nasopharyngeal carcinoma: Defining high-risk patients who may benefit before concurrent chemotherapy combined with intensity-modulated radiotherapy. Scientific Reports, 2015, 5, 16664.	1.6	34
87	Ribonucleotide reductase M2 subunit expression and prognostic value in nasopharyngeal carcinoma. Molecular Medicine Reports, 2015, 12, 401-409.	1.1	10
88	Identification of surrogate endpoints in patients with locoregionally advanced nasopharyngeal carcinoma receiving neoadjuvant chemotherapy plus concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone. BMC Cancer, 2015, 15, 930.	1.1	6
89	The impact of the cumulative dose of cisplatin during concurrent chemoradiotherapy on the clinical outcomes of patients with advanced-stage nasopharyngeal carcinoma in an era of intensity-modulated radiotherapy. BMC Cancer, 2015, 15, 977.	1,1	21
90	TACC3 promotes stemness and is a potential therapeutic target in hepatocellular carcinoma. Oncotarget, 2015, 6, 24163-24177.	0.8	54

#	Article	IF	Citations
91	Elevated High-Sensitivity C-Reactive Protein Levels Predict Decreased Survival for Nasopharyngeal Carcinoma Patients in the Intensity-Modulated Radiotherapy Era. PLoS ONE, 2015, 10, e0122965.	1.1	21
92	Is Hemoglobin Level in Patients with Nasopharyngeal Carcinoma Still a Significant Prognostic Factor in the Era of Intensity-Modulated Radiotherapy Technology?. PLoS ONE, 2015, 10, e0136033.	1.1	28
93	High expression of Talin-1 is associated with poor prognosis in patients with nasopharyngeal carcinoma. BMC Cancer, 2015, 15, 332.	1.1	21
94	Neuropilin 1 is an entry factor that promotes EBV infection of nasopharyngeal epithelial cells. Nature Communications, 2015, 6, 6240.	5.8	144
95	High-Sensitivity C-Reactive Protein Complements Plasma Epstein-Barr Virus Deoxyribonucleic Acid Prognostication in Nasopharyngeal Carcinoma: A Large-Scale Retrospective and Prospective Cohort Study. International Journal of Radiation Oncology Biology Physics, 2015, 91, 325-336.	0.4	41
96	Identification of miR-143 as a tumour suppressor in nasopharyngeal carcinoma based on microRNA expression profiling. International Journal of Biochemistry and Cell Biology, 2015, 61, 120-128.	1.2	30
97	Pregnancy associated nasopharyngeal carcinoma: A retrospective case-control analysis of maternal survival outcomes. Radiotherapy and Oncology, 2015, 116, 125-130.	0.3	8
98	The Prognostic Value of Plasma Epstein-Barr Viral DNA and Tumor Response to Neoadjuvant Chemotherapy in Advanced-Stage Nasopharyngeal Carcinoma. International Journal of Radiation Oncology Biology Physics, 2015, 93, 862-869.	0.4	110
99	The prognostic value of serum C-reactive protein-bound serum amyloid A in early-stage lung cancer. Chinese Journal of Cancer, 2015, 34, 335-49.	4.9	20
100	Genome-Wide Identification of a Methylation Gene Panel as a Prognostic Biomarker in Nasopharyngeal Carcinoma. Molecular Cancer Therapeutics, 2015, 14, 2864-2873.	1.9	80
101	Nonmuscle myosin heavy chain IIA mediates Epstein–Barr virus infection of nasopharyngeal epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11036-11041.	3.3	70
102	Different Prognostic Values of Plasma Epstein-Barr Virus DNA and Maximal Standardized Uptake Value of 18F-FDG PET/CT for Nasopharyngeal Carcinoma Patients with Recurrence. PLoS ONE, 2015, 10, e0122756.	1.1	27
103	High expression of TACC3 in esophageal squamous cell carcinoma correlates with poor prognosis. Oncotarget, 2015, 6, 6850-6861.	0.8	30
104	Effect of latent membrane protein 1 expression on overall survival in Epstein-Barr virus-associated cancers: a literature-based meta-analysis. Oncotarget, 2015, 6, 29311-29323.	0.8	37
105	Combining plasma Epstein-Barr virus DNA and nodal maximal standard uptake values of 18F-fluoro-2-deoxy-D-glucose positron emission tomography improved prognostic stratification to predict distant metastasis for locoregionally advanced nasopharyngeal carcinoma. Oncotarget, 2015, 6. 38296-38307.	0.8	10
106	Comparison of Long-Term Survival and Toxicity of Cisplatin Delivered Weekly versus Every Three Weeks Concurrently with Intensity-Modulated Radiotherapy in Nasopharyngeal Carcinoma. PLoS ONE, 2014, 9, e110765.	1.1	31
107	SPECT and Near-Infrared Fluorescence Imaging of Breast Cancer with a Neuropilin-1-Targeting Peptide. Journal of Controlled Release, 2014, 192, 236-242.	4.8	30
108	MicroRNA-30a promotes invasiveness and metastasis ⟨i⟩inÂvitro⟨ i⟩ and ⟨i⟩inÂvivo⟨ i⟩ through epithelial–mesenchymal transition and results in poor survival of nasopharyngeal carcinoma patients. Experimental Biology and Medicine, 2014, 239, 891-898.	1.1	29

#	Article	IF	CITATIONS
109	Thymosin beta 10 correlates with lymph node metastases of papillary thyroid carcinoma. Journal of Surgical Research, 2014, 192, 487-493.	0.8	17
110	Knockdown of miR-214 Promotes Apoptosis and Inhibits Cell Proliferation in Nasopharyngeal Carcinoma. PLoS ONE, 2014, 9, e86149.	1.1	62
111	The Pretreatment Albumin to Globulin Ratio Has Predictive Value for Long-Term Mortality in Nasopharyngeal Carcinoma. PLoS ONE, 2014, 9, e94473.	1.1	99
112	EBV infection and persistence in nasopharyngeal epithelial cells. Chinese Journal of Cancer, 2014, 33, 549-55.	4.9	43
113	Direct Sequencing and Characterization of a Clinical Isolate of Epstein-Barr Virus from Nasopharyngeal Carcinoma Tissue by Using Next-Generation Sequencing Technology. Journal of Virology, 2011, 85, 11291-11299.	1.5	93
114	Epstein-Barr Virus-Encoded LMP2A Induces an Epithelial–Mesenchymal Transition and Increases the Number of Side Population Stem-like Cancer Cells in Nasopharyngeal Carcinoma. PLoS Pathogens, 2010, 6, e1000940.	2.1	173
115	The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. Journal of Clinical Investigation, 2009, 119, 3626-3636.	3.9	365
116	Bmi-1 Is a Novel Molecular Marker of Nasopharyngeal Carcinoma Progression and Immortalizes Primary Human Nasopharyngeal Epithelial Cells. Cancer Research, 2006, 66, 6225-6232.	0.4	306
117	Hypoxia can contribute to the induction of the Epstein-Barr virus (EBV) lytic cycle. Journal of Clinical Virology, 2006, 37, 98-103.	1.6	59
118	Genomic Sequence Analysis of Epstein-Barr Virus Strain GD1 from a Nasopharyngeal Carcinoma Patient. Journal of Virology, 2005, 79, 15323-15330.	1.5	99
119	Induction of Broadly Cross-Reactive Antibody Responses to SARS-CoV-2 Variants by S1 Nanoparticle Vaccines. Journal of Virology, 0, , .	1.5	3