

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8860652/publications.pdf Version: 2024-02-01

ΧιλΤι

#	Article	IF	CITATIONS
1	Dual-functional interfaces for highly stable Ni-rich layered cathodes in sulfide all-solid-state batteries. Energy Storage Materials, 2020, 27, 117-123.	9.5	109
2	Engineering the conductive carbon/PEO interface to stabilize solid polymer electrolytes for all-solid-state high voltage LiCoO ₂ batteries. Journal of Materials Chemistry A, 2020, 8, 2769-2776.	5.2	72
3	Engineering Surface Oxygenated Functionalities on Commercial Carbon toward Ultrafast Sodium Storage in Ether-Based Electrolytes. ACS Applied Materials & Interfaces, 2020, 12, 37116-37127.	4.0	13
4	Eliminating the Detrimental Effects of Conductive Agents in Sulfide-Based Solid-State Batteries. ACS Energy Letters, 2020, 5, 1243-1251.	8.8	80
5	Ultrastable Anode Interface Achieved by Fluorinating Electrolytes for All-Solid-State Li Metal Batteries. ACS Energy Letters, 2020, 5, 1035-1043.	8.8	176
6	Advanced characterization techniques for solid state lithium battery research. Materials Today, 2020, 36, 139-157.	8.3	86
7	Li ₁₀ Ge(P _{1–<i>x</i>} Sb <i>_x</i>) ₂ S ₁₂ Lithium-Ion Conductors with Enhanced Atmospheric Stability. Chemistry of Materials, 2020, 32, 2664-2672.	3.2	125
8	Suppressing Corrosion of Aluminum Foils via Highly Conductive Graphene-like Carbon Coating in High-Performance Lithium-Based Batteries. ACS Applied Materials & Interfaces, 2019, 11, 32826-32832.	4.0	39
9	Unravelling the Chemistry and Microstructure Evolution of a Cathodic Interface in Sulfide-Based All-Solid-State Li-Ion Batteries. ACS Energy Letters, 2019, 4, 2480-2488.	8.8	154
10	Promoting the Transformation of Li ₂ S ₂ to Li ₂ S: Significantly Increasing Utilization of Active Materials for High‣ulfur‣oading Li–S Batteries. Advanced Materials, 2019, 31, e1901220.	11.1	303
11	Solidâ€&tate Plastic Crystal Electrolytes: Effective Protection Interlayers for Sulfideâ€Based Allâ€&olidâ€&tate Lithium Metal Batteries. Advanced Functional Materials, 2019, 29, 1900392.	7.8	154
12	Manipulating Interfacial Nanostructure to Achieve Highâ€Performance Allâ€Solidâ€State Lithiumâ€Ion Batteries. Small Methods, 2019, 3, 1900261.	4.6	90
13	Highâ€Performance Li–SeS <i>_x</i> Allâ€Solidâ€State Lithium Batteries. Advanced Materials, 2019 31, e1808100.	^{9,} 11.1	121
14	Robust Metallic Lithium Anode Protection by the Molecular‣ayerâ€Deposition Technique. Small Methods, 2018, 2, 1700417.	4.6	84
15	Boosting the performance of lithium batteries with solid-liquid hybrid electrolytes: Interfacial properties and effects of liquid electrolytes. Nano Energy, 2018, 48, 35-43.	8.2	143
16	Carbon paper interlayers: A universal and effective approach for highly stable Li metal anodes. Nano Energy, 2018, 43, 368-375.	8.2	117
17	Multi-functional nanowall arrays with unrestricted Li ⁺ transport channels and an integrated conductive network for high-areal-capacity Li–S batteries. Journal of Materials Chemistry A, 2018, 6, 22958-22965.	5.2	31
18	Stabilization of all-solid-state Li–S batteries with a polymer–ceramic sandwich electrolyte by atomic layer deposition. Journal of Materials Chemistry A, 2018, 6, 23712-23719.	5.2	77

Xia Li

#	Article	IF	CITATIONS
19	A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation. Nature Communications, 2018, 9, 4509.	5.8	175
20	Interface Design and Development of Coating Materials in Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1801323.	7.8	91
21	Structural Design of Lithium–Sulfur Batteries: From Fundamental Research to Practical Application. Electrochemical Energy Reviews, 2018, 1, 239-293.	13.1	298
22	High-performance all-solid-state Li–Se batteries induced by sulfide electrolytes. Energy and Environmental Science, 2018, 11, 2828-2832.	15.6	99
23	Origin of the high oxygen reduction reaction of nitrogen and sulfur co-doped MOF-derived nanocarbon electrocatalysts. Materials Horizons, 2017, 4, 900-907.	6.4	95
24	Atomic Layer Deposited Nonâ€Noble Metal Oxide Catalyst for Sodium–Air Batteries: Tuning the Morphologies and Compositions of Discharge Product. Advanced Functional Materials, 2017, 27, 1606662.	7.8	34
25	Safe and Durable High-Temperature Lithium–Sulfur Batteries via Molecular Layer Deposited Coating. Nano Letters, 2016, 16, 3545-3549.	4.5	157
26	Metal organic frameworks for energy storage and conversion. Energy Storage Materials, 2016, 2, 35-62.	9.5	483
27	Tunable porous structure of metal organic framework derived carbon and the application in lithium–sulfur batteries. Journal of Power Sources, 2016, 302, 174-179.	4.0	100
28	Toward a Sodium–"Air―Battery: Revealing the Critical Role of Humidity. Journal of Physical Chemistry C, 2015, 119, 13433-13441.	1.5	66
29	Three-Dimensional Nanostructured Air Electrode for Sodium–Oxygen Batteries: A Mechanism Study toward the Cyclability of the Cell. Chemistry of Materials, 2015, 27, 3040-3047.	3.2	86
30	Extremely Stable Platinum Nanoparticles Encapsulated in a Zirconia Nanocage by Area‧elective Atomic Layer Deposition for the Oxygen Reduction Reaction. Advanced Materials, 2015, 27, 277-281.	11.1	238
31	Graphene Nanoribbons Derived from the Unzipping of Carbon Nanotubes: Controlled Synthesis and Superior Lithium Storage Performance. Journal of Physical Chemistry C, 2014, 118, 881-890.	1.5	93
32	Superior stable sulfur cathodes of Li–S batteries enabled by molecular layer deposition. Chemical Communications, 2014, 50, 9757.	2.2	56
33	Tailoring interactions of carbon and sulfur in Li–S battery cathodes: significant effects of carbon–heteroatom bonds. Journal of Materials Chemistry A, 2014, 2, 12866.	5.2	75
34	Nanoscale stabilization of Li–sulfur batteries by atomic layer deposited Al2O3. RSC Advances, 2014, 4, 27126.	1.7	38