Xia Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8860652/publications.pdf

Version: 2024-02-01

136740 377514 4,158 34 32 34 citations h-index g-index papers 34 34 34 5480 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Metal organic frameworks for energy storage and conversion. Energy Storage Materials, 2016, 2, 35-62.	9.5	483
2	Promoting the Transformation of Li ₂ S ₂ to Li ₂ S: Significantly Increasing Utilization of Active Materials for Highâ€Sulfurâ€Loading Li–S Batteries. Advanced Materials, 2019, 31, e1901220.	11.1	303
3	Structural Design of Lithium–Sulfur Batteries: From Fundamental Research to Practical Application. Electrochemical Energy Reviews, 2018, 1, 239-293.	13.1	298
4	Extremely Stable Platinum Nanoparticles Encapsulated in a Zirconia Nanocage by Areaâ€Selective Atomic Layer Deposition for the Oxygen Reduction Reaction. Advanced Materials, 2015, 27, 277-281.	11.1	238
5	Ultrastable Anode Interface Achieved by Fluorinating Electrolytes for All-Solid-State Li Metal Batteries. ACS Energy Letters, 2020, 5, 1035-1043.	8.8	176
6	A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation. Nature Communications, 2018, 9, 4509.	5.8	175
7	Safe and Durable High-Temperature Lithium–Sulfur Batteries via Molecular Layer Deposited Coating. Nano Letters, 2016, 16, 3545-3549.	4.5	157
8	Unravelling the Chemistry and Microstructure Evolution of a Cathodic Interface in Sulfide-Based All-Solid-State Li-Ion Batteries. ACS Energy Letters, 2019, 4, 2480-2488.	8.8	154
9	Solidâ€State Plastic Crystal Electrolytes: Effective Protection Interlayers for Sulfideâ€Based Allâ€Solidâ€State Lithium Metal Batteries. Advanced Functional Materials, 2019, 29, 1900392.	7.8	154
10	Boosting the performance of lithium batteries with solid-liquid hybrid electrolytes: Interfacial properties and effects of liquid electrolytes. Nano Energy, 2018, 48, 35-43.	8.2	143
11	Li ₁₀ Ge(P _{1–<i>x</i>} Sb <i>_x</i>) ₂ S ₁₂ Lithium-lon Conductors with Enhanced Atmospheric Stability. Chemistry of Materials, 2020, 32, 2664-2672.	3.2	125
12	Highâ€Performance Li–SeS <i></i> Allâ€Solidâ€State Lithium Batteries. Advanced Materials, 2019, 31, e1808100.	'11.1 	121
13	Carbon paper interlayers: A universal and effective approach for highly stable Li metal anodes. Nano Energy, 2018, 43, 368-375.	8.2	117
14	Dual-functional interfaces for highly stable Ni-rich layered cathodes in sulfide all-solid-state batteries. Energy Storage Materials, 2020, 27, 117-123.	9.5	109
15	Tunable porous structure of metal organic framework derived carbon and the application in lithium–sulfur batteries. Journal of Power Sources, 2016, 302, 174-179.	4.0	100
16	High-performance all-solid-state Li–Se batteries induced by sulfide electrolytes. Energy and Environmental Science, 2018, 11, 2828-2832.	15.6	99
17	Origin of the high oxygen reduction reaction of nitrogen and sulfur co-doped MOF-derived nanocarbon electrocatalysts. Materials Horizons, 2017, 4, 900-907.	6.4	95
18	Graphene Nanoribbons Derived from the Unzipping of Carbon Nanotubes: Controlled Synthesis and Superior Lithium Storage Performance. Journal of Physical Chemistry C, 2014, 118, 881-890.	1.5	93

#	Article	IF	CITATIONS
19	Interface Design and Development of Coating Materials in Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1801323.	7.8	91
20	Manipulating Interfacial Nanostructure to Achieve Highâ€Performance Allâ€Solidâ€State Lithiumâ€Ion Batteries. Small Methods, 2019, 3, 1900261.	4.6	90
21	Three-Dimensional Nanostructured Air Electrode for Sodium–Oxygen Batteries: A Mechanism Study toward the Cyclability of the Cell. Chemistry of Materials, 2015, 27, 3040-3047.	3.2	86
22	Advanced characterization techniques for solid state lithium battery research. Materials Today, 2020, 36, 139-157.	8.3	86
23	Robust Metallic Lithium Anode Protection by the Molecularâ€Layerâ€Deposition Technique. Small Methods, 2018, 2, 1700417.	4.6	84
24	Eliminating the Detrimental Effects of Conductive Agents in Sulfide-Based Solid-State Batteries. ACS Energy Letters, 2020, 5, 1243-1251.	8.8	80
25	Stabilization of all-solid-state Li–S batteries with a polymer–ceramic sandwich electrolyte by atomic layer deposition. Journal of Materials Chemistry A, 2018, 6, 23712-23719.	5.2	77
26	Tailoring interactions of carbon and sulfur in Li–S battery cathodes: significant effects of carbon–heteroatom bonds. Journal of Materials Chemistry A, 2014, 2, 12866.	5.2	75
27	Engineering the conductive carbon/PEO interface to stabilize solid polymer electrolytes for all-solid-state high voltage LiCoO ₂ batteries. Journal of Materials Chemistry A, 2020, 8, 2769-2776.	5.2	72
28	Toward a Sodium–"Air―Battery: Revealing the Critical Role of Humidity. Journal of Physical Chemistry C, 2015, 119, 13433-13441.	1.5	66
29	Superior stable sulfur cathodes of Li–S batteries enabled by molecular layer deposition. Chemical Communications, 2014, 50, 9757.	2.2	56
30	Suppressing Corrosion of Aluminum Foils via Highly Conductive Graphene-like Carbon Coating in High-Performance Lithium-Based Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 32826-32832.	4.0	39
31	Nanoscale stabilization of Li–sulfur batteries by atomic layer deposited Al2O3. RSC Advances, 2014, 4, 27126.	1.7	38
32	Atomic Layer Deposited Nonâ€Noble Metal Oxide Catalyst for Sodium–Air Batteries: Tuning the Morphologies and Compositions of Discharge Product. Advanced Functional Materials, 2017, 27, 1606662.	7.8	34
33	Multi-functional nanowall arrays with unrestricted Li ⁺ transport channels and an integrated conductive network for high-areal-capacity Li–S batteries. Journal of Materials Chemistry A, 2018, 6, 22958-22965.	5.2	31
34	Engineering Surface Oxygenated Functionalities on Commercial Carbon toward Ultrafast Sodium Storage in Ether-Based Electrolytes. ACS Applied Materials & Samp; Interfaces, 2020, 12, 37116-37127.	4.0	13