
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8860310/publications.pdf Version: 2024-02-01

REDNADD DUSSADDIED

#	Article	IF	CITATIONS
1	Dysprosium-doped silica fiber as saturable absorber for mid-infrared pulsed all-fiber lasers. Optics Express, 2022, 30, 3367.	3.4	4
2	Gradual-Time Solution Doping for the Fabrication of Longitudinally Varying Optical Fibres. Journal of Lightwave Technology, 2018, 36, 1786-1791.	4.6	7
3	Impact of cerium and lanthanum on the photo-darkening and photo-bleaching mechanisms in thulium-doped fibre. Optical Materials, 2017, 72, 106-114.	3.6	6
4	Steady photodarkening of thulium alumino-silicate fibers pumped at 107  μm: quantitative effect of lanthanum, cerium, and thulium. Optics Letters, 2016, 41, 2771.	3.3	20
5	Formation and applications of nanoparticles in silica optical fibers. Journal of Optics (India), 2016, 45, 247-254.	1.7	61
6	New challenges and directions toward nanoscale control of rare-earth properties in silica amplifying optical fibres. , 2014, , .		1
7	Thermally-stimulated emission analysis of bismuth-doped silica fibers. Optical Materials Express, 2014, 4, 1361.	3.0	4
8	Different Er3+ environments in Mg-based nanoparticle-doped optical fibre preforms. Journal of Non-Crystalline Solids, 2014, 401, 50-53.	3.1	18
9	Spectroscopic properties of LaF3:Tm3+ nanoparticle-doped silica optical fibers. , 2014, , .		0
10	Erbium- and Magnesium-codoped Silica-Based Transparent Glass Ceramic Core Fiber Made by FCVD and Flash Vaporization. , 2014, , .		0
11	Composition of nanoparticles in optical fibers by Secondary Ion Mass Spectrometry. Optical Materials Express, 2012, 2, 1504.	3.0	40
12	Self-induced laser line sweeping and self-pulsing in double-clad fiber lasers in Fabry-Perot and unidirectional ring cavities. Proceedings of SPIE, 2012, , .	0.8	13
13	Self-induced laser line sweeping in double-clad Yb-doped fiber-ring lasers. Laser Physics Letters, 2012, 9, 445-450.	1.4	46
14	Erbium-doped nanoparticles in silica-based optical fibres. International Journal of Nanotechnology, 2012, 9, 480.	0.2	14
15	Erbium-doped transparent glass ceramic optical fibres: Characterization using mass spectroscopy and molecular dynamics modeling. , 2012, , .		0
16	Thulium-doped silica fibers with enhanced ³ H <inf>4</inf> level lifetime for fiber lasers and amplifiers. , 2012, , .		2
17	Preparation and Properties of <scp> <scp>Er</scp>â€Doped <scp> <scp>ZrO</scp> ₂ </scp> Nanocrystalline Phaseâ€6eparated Preforms of Optical Fibers by <scp>MCVD</scp> Process. International Journal of Applied Ceramic Technology, 2012, 9, 341-348.</scp>	2.1	12
18	Characterization of Erbium-Doped Nanoparticles in Transparent Glass Ceramic Optical Fibres. , 2012, , .		0

Characterization of Erbium-Doped Nanoparticles in Transparent Glass Ceramic Optical Fibres. , 2012, , . 18

#	Article	IF	CITATIONS
19	Large-mode-area leaky optical fiber fabricated by MCVD. Applied Optics, 2011, 50, 3118.	2.1	33
20	Passively Q-switched ytterbium- and chromium-doped all-fiber laser. Applied Optics, 2011, 50, E20.	2.1	25
21	Theoretical modeling of fiber laser at 810 nm based on thulium-doped silica fibers with enhanced ^3H_4 level lifetime. Optics Express, 2011, 19, 2773.	3.4	74
22	Preparation and characterization of highly thulium- and alumina-doped optical fibers for single-frequency fiber lasers. , 2011, , .		2
23	Fabrication of Rare Earth-Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition. Journal of the American Ceramic Society, 2011, 94, 2315-2318.	3.8	94
24	Spectroscopic signature of phosphate crystallization in erbium-doped optical fibre preforms. Optical Materials, 2011, 33, 835-838.	3.6	15
25	Design and fabrication of an asymmetric twin-core fiber directional coupler for gain-flattened EDFA. Proceedings of SPIE, 2011, , .	0.8	1
26	Design and fabrication of an asymmetric twin-core fiber directional coupler for gain-flattened EDFA. , 2011, , .		0
27	Thulium-doped silica fibers with enhanced3H 4 level lifetime: modelling the devices for 800-820 nm band. , 2010, , .		2
28	Birefringence analysis of multilayer leaky cladding optical fibre. Journal of Optics (United Kingdom), 2010, 12, 065705.	2.2	0
29	Improving the radial dopant distribution in silica optical fibres. , 2010, , .		0
30	Long-period fiber grating as wavelength selective element in double-clad Yb-doped fiber-ring lasers. Laser Physics Letters, 2009, 6, 732-736.	1.4	65
31	Design and fabrication of an intrinsically gain flattened Erbium doped fiber amplifier. Optics Communications, 2009, 282, 2335-2338.	2.1	15
32	Erbium emission properties in nanostructured fibers. Applied Optics, 2009, 48, G119.	2.1	29
33	Role of CaO addition in the local order around Erbium in SiO2–GeO2–P2O5 fiber preforms. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 146, 167-170.	3.5	20
34	Thulium environment in a silica doped optical fibre. Journal of Non-Crystalline Solids, 2008, 354, 435-439.	3.1	35
35	Visible and near infra-red up-conversion in Tm^3+/Yb^3+ co-doped silica fibers under 980 nm excitation. Optics Express, 2008, 16, 13781.	3.4	64
36	Luminescent lons in Silica-Based Optical Fibers. Fiber and Integrated Optics, 2008, 27, 484-504.	2.5	6

#	Article	IF	CITATIONS
37	Broadening of the erbium emission in dielectric nanoparticles doped silica-based fibres. , 2008, , .		Ο
38	Estimation of energy transfer parameters in thulium- and ytterbium-doped silica fibers. , 2008, , .		9
39	Co-axial dual-core resonant leaky fibre for optical amplifiers. Journal of Optics, 2008, 10, 115306.	1.5	18
40	Design and realization of a side-polished single-mode fiber optic high-sensitive temperature sensor. Proceedings of SPIE, 2008, , .	0.8	0
41	Passive Temperature-Compensating Technique for Microstructured Fiber Bragg Gratings. IEEE Sensors Journal, 2008, 8, 1073-1078.	4.7	11
42	Design and realization of an inherently gain flattened Erbium doped fiber amplifier. , 2008, , .		0
43	Distributed gain in a Tm-doped silica fiber - experiment and modeling. , 2007, , .		2
44	Novel Dopants for Silica-Based Fiber Amplifiers. , 2007, , .		3
45	Optimization of a passively Q-switched double clad Yb ³⁺ :Cr ⁴⁺ all fibre laser. , 2007, , .		0
46	Tm ³⁺ /Yb ³⁺ co-doped alumino-silicate fibre: potential for S-band optical amplification. , 2007, , .		0
47	Temperature compensation technique for Bragg gratings in microstructured optical fibers for sensing applications. , 2007, , .		0
48	Alternative Dopants for Silica Fibre Amplifiers. , 2007, , .		0
49	Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer. Optics Letters, 2007, 32, 2390.	3.3	113
50	Improvement of the Tm3+:3H4 level lifetime in silica optical fibers by lowering the local phonon energy. Journal of Non-Crystalline Solids, 2007, 353, 2767-2773.	3.1	57
51	Thulium-doped silica-based optical fibers for cladding-pumped fiber amplifiers. Optical Materials, 2007, 30, 174-176.	3.6	26
52	Tm ³⁺ /Yb ³⁺ co-doped alumino-silicate fibre: potential for S-band optical amplification. , 2007, , .		0
53	Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement. Measurement Science and Technology, 2006, 17, 992-997.	2.6	52
54	Tunable red-light source by frequency mixing from dual band Er/Yb co-doped fiber laser. Optics Express, 2006, 14, 3936.	3.4	11

#	Article	IF	CITATIONS
55	Tilted Fiber Bragg Grating photowritten in microstructured optical fiber for improved refractive index measurement. Optics Express, 2006, 14, 10359.	3.4	43
56	Energy transfer up-conversion in Tm3+-doped silica fiber. Journal of Non-Crystalline Solids, 2006, 352, 136-141.	3.1	31
57	Inherently gain flattened L+ band TDFA based on W-fiber design. Optics Communications, 2006, 262, 193-199.	2.1	8
58	<title>Characterization of a thulium-doped silica-based optical fibre for S-band amplification</title> . , 2006, 6180, 181.		4
59	Impact of Aluminium Codoping on the 1.47 \hat{A}_{ℓ} m Emission Efficiency in a Thulium-Doped Silica Fibre. , 2006, , .		1
60	Tunable laser in the green, red and near IR by frequency mixing of a dual wavelength Er/Yb co-doped fiber laser. , 2006, , .		0
61	Microstructured fibers for sensing applications (Invited Paper). , 2005, , .		4
62	Strain-imposed fiber optic laser-based system for wide range temperature measurement applications. , 2005, , .		0
63	Fiber Bragg grating photowriting in microstructured optical fibers for sensing application based on refractive index measurement. , 2005, , .		2
64	Inherently gain flattened, TDFA design for L+ Band. , 2005, , FWH4.		0
65	Coherent combining in an Yb doped double core fiber laser. , 2005, , .		0
66	Coherent combining in an Yb-doped double-core fiber laser. Optics Letters, 2005, 30, 1962.	3.3	25
67	Evidence of thermal effects in a high-power Er^3+–Yb^3+ fiber laser. Optics Letters, 2005, 30, 3030.	3.3	24
68	Segmented-clad fiber design for inherently gain-flattened L/sup +/-band TDFA. IEEE Photonics Technology Letters, 2005, 17, 1833-1835.	2.5	2
69	A wide temperature tunable fibre laser using a chirped grating and a type IIA fibre Bragg grating. Measurement Science and Technology, 2004, 15, 1113-1119.	2.6	8
70	Thulium-doped silica-fiber based S-band amplifier with increased efficiency by aluminum co-doping. , 2004, , OWC2.		11
71	Strain-independent temperature measurement using a type-I and type-IIA optical fiber Bragg grating combination. Review of Scientific Instruments, 2004, 75, 1327-1331.	1.3	21
72	Theoretical modelling of S-band thulium-doped silica fibre amplifiers. Optical and Quantum Electronics, 2004, 36, 201-212.	3.3	113

#	Article	IF	CITATIONS
73	Investigation of the photosensitivity, temperature sustainability and fluorescence characteristics of several Er-doped photosensitive fibers. Optics Communications, 2004, 237, 301-308.	2.1	10
74	Non-linear temperature dependence of Bragg gratings written in different fibres, optimised for sensor applications over a wide range of temperatures. Sensors and Actuators A: Physical, 2004, 112, 211-219.	4.1	42
75	Bragg gratings written in Sn–Er–Ge-codoped silica fiber: investigation of photosensitivity, thermal stability, and sensing potential. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2004, 21, 1503.	1.5	8
76	Conception and characterization of a dual-concentric-core erbium-doped dispersion-compensating fiber. Optics Letters, 2004, 29, 700.	3.3	5
77	High repetition rate passively Q-switched Nd3+:Cr4+ all-fibre laser. Electronics Letters, 2003, 39, 1307.	1.0	43
78	Bragg grating performance in Er–Sn-doped germanosilicate fiber for simultaneous measurement of wide range temperature (to 500 °C) and strain. Review of Scientific Instruments, 2003, 74, 4858-4862.	1.3	14
79	Very large effective area singlemode photonic bandgap fibre. Electronics Letters, 2003, 39, 1240.	1.0	44
80	Conception, Realization, and Characterization of a Very High Negative Chromatic Dispersion Fiber. Optical Fiber Technology, 2002, 8, 89-105.	2.7	73
81	Cr4+-doped silica-based optical fibers fluorescence from 0.8 μm to 1.7 μm , 2002, , .		3
82	Fluorescence de 0,8 à 1,7 μpm de fibres optiques en silice dopées par l'ion Cr ⁴⁺ . European Physical Journal Special Topics, 2002, 12, 243-245.	0.2	0
83	Chromium-doped silica optical fibres: influence of the core composition on the Cr oxidation states and crystal field. Optical Materials, 2001, 16, 269-277.	3.6	31
84	Design of a high negative chromatic dispersion in a single mode optical fibre: effect of the central index dip. Optics Communications, 2000, 178, 71-77.	2.1	9
85	Modal contribution to the polarization dependent gain constant in Er3+-doped fiber. Optics Communications, 2000, 185, 407-412.	2.1	Ο
86	Cr4+-doped silica optical fibres: absorption and fluorescence properties. EPJ Applied Physics, 2000, 11, 107-110.	0.7	19
87	–1800 ps/(nm.km) chromatic dispersion at 1.55 [micro sign]m in dual concentric core fibre. Electronics Letters, 2000, 36, 1689.	1.0	85
88	Clustering effects on double energy transfer in heavily ytterbium–erbium-codoped silica fibers. Journal of the Optical Society of America B: Optical Physics, 1996, 13, 693.	2.1	35
89	Blue Upconversion Emission in Er3+-Doped Fluoride Fiber. Optical Fiber Technology, 1996, 2, 249-252.	2.7	6
90	Spectroscopic analysis of Er3+ transitions in lithium niobate. Journal of Luminescence, 1996, 69, 17-26.	3.1	153

#	Article	IF	CITATIONS
91	Spectroscopy and CW 2-photon up-conversion in Tm3+-doped ZnCl2-based glass. Optical Materials, 1995, 4, 565-573.	3.6	12
92	Pr3+-doped Cs:Ga:S:Cl glass for efficient 1.3 Âμm optical fibre amplifier. Electronics Letters, 1995, 31, 206-208.	1.0	11
93	Clustering-induced nonsaturable absorption phenomenon in heavily erbium-doped silica fibers. Optics Letters, 1995, 20, 2487.	3.3	44
94	Erbium-doped silica fibers for intrinsic fiber-optic temperature sensors. Applied Optics, 1995, 34, 8019.	2.1	117
95	Thermalization effects between upper levels of green fluorescence in Er-doped silica fibers. Optics Letters, 1994, 19, 990.	3.3	86
96	Fluorescence and superfluorescence line narrowing and tunability of Nd/sup 3+/ doped fibers. IEEE Journal of Quantum Electronics, 1994, 30, 2361-2367.	1.9	5
97	Amplified spontaneous emission in Ho3+ doped ZBLA fibres. Journal of Non-Crystalline Solids, 1993, 161, 249-253.	3.1	0
98	Simultaneous measurements of lifetime, gain and emission cross section in a neodymium-doped fiber. IEEE Photonics Technology Letters, 1993, 5, 419-421.	2.5	1
99	Near infrared emission in Ho3+fluorozirconate fibres. Journal of Optics, 1993, 2, 81-85.	0.5	1
100	Gain-guided optical amplification in a stoichiometric KNdP4O12crystal transversely pumped by a high power diode laser. Journal of Optics, 1993, 2, 569-573.	0.5	2
101	Impurity fluorescence in fluorozirconate fibers. Applied Optics, 1992, 31, 1175.	2.1	0
102	Chromium-doped silica-based optical fibres: influence of the chemical composition on oxidation states and optical properties. , 0, , .		0
103	Cr/sup 4+/-doped silica-based optical fibres: absorption and fluorescence properties. , 0, , .		0
104	Very first evidence of propagation in a modified chemical vapour deposition photonic-band-gap fibre (Bragg type). , 0, , .		0
105	An integrated Nd/sup 3+/:Cr/sup 4+/ passively Q-switched all-fiber laser. , 0, , .		0
106	A passively Q-switched Er/sup 3+/ -doped fiber laser using a Co/sup 2+/ -doped fiber as saturable absorber. , 0, , .		0
107	Tailoring of the Local Environment of Active Ions in Rare-Earth- and Transition-Metal-Doped Optical Fibres, and Potential Applications. , 0, , .		10