
Enrico Girardi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8860240/publications.pdf

Version: 2024-02-01

ENDICO CIDADOL

#	Article	IF	CITATIONS
1	Cell-surface SLC nucleoside transporters and purine levels modulate BRD4-dependent chromatin states. Nature Metabolism, 2021, 3, 651-664.	11.9	7
2	Cross-species analysis of viral nucleic acid interacting proteins identifies TAOKs as innate immune regulators. Nature Communications, 2021, 12, 7009.	12.8	22
3	Epistasis-driven identification of SLC25A51 as a regulator of human mitochondrial NAD import. Nature Communications, 2020, 11, 6145.	12.8	78
4	TASL is the SLC15A4-associated adaptor for IRF5 activation by TLR7–9. Nature, 2020, 581, 316-322.	27.8	117
5	A widespread role for SLC transmembrane transporters in resistance to cytotoxic drugs. Nature Chemical Biology, 2020, 16, 469-478.	8.0	84
6	The RESOLUTE consortium: unlocking SLC transporters for drug discovery. Nature Reviews Drug Discovery, 2020, 19, 429-430.	46.4	53
7	A substrateâ€based ontology for human solute carriers. Molecular Systems Biology, 2020, 16, e9652.	7.2	31
8	The transporters SLC35A1 and SLC30A1 play opposite roles in cell survival upon VSV virus infection. Scientific Reports, 2019, 9, 10471.	3.3	13
9	Systematic genetic mapping of necroptosis identifies SLC39A7 as modulator of death receptor trafficking. Cell Death and Differentiation, 2019, 26, 1138-1155.	11.2	26
10	In silico Prioritization of Transporter–Drug Relationships From Drug Sensitivity Screens. Frontiers in Pharmacology, 2018, 9, 1011.	3.5	23
11	The Bicarbonate Transporter SLC4A7 Plays a Key Role in Macrophage Phagosome Acidification. Cell Host and Microbe, 2018, 23, 766-774.e5.	11.0	65
12	Autoreactivity to Sulfatide by Human Invariant NKT Cells. Journal of Immunology, 2017, 199, 97-106.	0.8	19
13	NANS-mediated synthesis of sialic acid is required for brain and skeletal development. Nature Genetics, 2016, 48, 777-784.	21.4	125
14	Structure of an α-Helical Peptide and Lipopeptide Bound to the Nonclassical Major Histocompatibility Complex (MHC) Class I Molecule CD1d*. Journal of Biological Chemistry, 2016, 291, 10677-10683.	3.4	10
15	Recognition of Microbial Clycolipids by Natural Killer T Cells. Frontiers in Immunology, 2015, 6, 400.	4.8	58
16	A Novel Glycolipid Antigen for NKT Cells That Preferentially Induces IFN-Î ³ Production. Journal of Immunology, 2015, 195, 924-933.	0.8	28
17	Lipid and Carbohydrate Modifications of α-Galactosylceramide Differently Influence Mouse and Human Type I Natural Killer T Cell Activation. Journal of Biological Chemistry, 2015, 290, 17206-17217.	3.4	15
18	Recognition of Lysophosphatidylcholine by Type II NKT Cells and Protection from an Inflammatory Liver Disease. Journal of Immunology, 2014, 193, 4580-4589.	0.8	62

ENRICO GIRARDI

#	Article	IF	CITATIONS
19	A Î ³ δ Tâ€cell glimpse of glycolipids. Immunology and Cell Biology, 2014, 92, 99-100.	2.3	1
20	Helicobacter pylori Cholesteryl α-Glucosides Contribute to Its Pathogenicity and Immune Response by Natural Killer T Cells. PLoS ONE, 2013, 8, e78191.	2.5	56
21	Structural and Functional Characterization of a Novel Nonglycosidic Type I NKT Agonist with Immunomodulatory Properties. Journal of Immunology, 2012, 188, 2254-2265.	0.8	24
22	Structural Basis for the Recognition of C20:2-αGalCer by the Invariant Natural Killer T Cell Receptor-like Antibody L363*. Journal of Biological Chemistry, 2012, 287, 1269-1278.	3.4	29
23	Type II natural killer T cells use features of both innate-like and conventional T cells to recognize sulfatide self antigens. Nature Immunology, 2012, 13, 851-856.	14.5	123
24	Molecular basis of lipid antigen presentation by <scp>CD</scp> 1d and recognition by natural killer T cells. Immunological Reviews, 2012, 250, 167-179.	6.0	72
25	NKT Cell Ligand Recognition Logic: Molecular Basis for a Synaptic Duet and Transmission of Inflammatory Effectors. Journal of Immunology, 2011, 187, 1081-1089.	0.8	40
26	Invariant natural killer T cells recognize glycolipids from pathogenic Gram-positive bacteria. Nature Immunology, 2011, 12, 966-974.	14.5	295
27	Galactose-modified iNKT cell agonists stabilized by an induced fit of CD1d prevent tumour metastasis. EMBO Journal, 2011, 30, 2294-2305.	7.8	98
28	Glycolipids that Elicit IFN-Î ³ -Biased Responses from Natural Killer T Cells. Chemistry and Biology, 2011, 18, 1620-1630.	6.0	37
29	Galactose modified iNKT cell agonists stabilised by a novel structural modification of CD1d lead to marked Th1 polarisation in vivo. Annals of the Rheumatic Diseases, 2011, 70, A53-A53.	0.9	0
30	Cutting Edge: Structural Basis for the Recognition of β-Linked Glycolipid Antigens by Invariant NKT Cells. Journal of Immunology, 2011, 187, 2079-2083.	0.8	57
31	Unique Interplay between Sugar and Lipid in Determining the Antigenic Potency of Bacterial Antigens for NKT Cells. PLoS Biology, 2011, 9, e1001189.	5.6	43
32	Crystal Structure of Bovine CD1b3 with Endogenously Bound Ligands. Journal of Immunology, 2010, 185, 376-386.	0.8	15
33	The Vα14 invariant natural killer T cell TCR forces microbial glycolipids and CD1d into a conserved binding mode. Journal of Experimental Medicine, 2010, 207, 2383-2393.	8.5	78
34	The crystal structure of rabbit IgG-Fc. Biochemical Journal, 2009, 417, 77-83.	3.7	25