
Delphine Chan-Seng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8860230/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microfluidic elaboration of polymer microfibers from miscible phases: Effect of operating and material parameters on fiber diameter. Journal of the Taiwan Institute of Chemical Engineers, 2022, 132, 104215.	2.7	4
2	Production of Janus/Hecate microfibers by microfluidic photopolymerization and evaluation of their potential in dye removal. Chemical Communications, 2022, 58, 4619-4622.	2.2	6
3	Microfluidic Janus fibers with dual thermoresponsive behavior for thermoactuation. European Polymer Journal, 2022, 174, 111321.	2.6	1
4	Adsorption of phenylalanine-rich sequence-defined oligomers onto Kevlar fibers for fiber-reinforced polyolefin composite materials. Polymer, 2021, 217, 123465.	1.8	9
5	Controlled Synthesis of NaYF ₄ :Yb,Er Upconversion Nanocrystals as Potential Probe for Bioimaging: A Focus on Heat Treatment. ACS Applied Nano Materials, 2021, 4, 5319-5329.	2.4	25
6	Reengineering Tumor Microenvironment with Sequential Interleukin Delivery. Bioengineering, 2021, 8, 90.	1.6	7
7	Insertion of hydrophobic spacers on dodecalysines as potential transfection enhancers. European Polymer Journal, 2021, 157, 110654.	2.6	2
8	Tuning polymers grafted on upconversion nanoparticles for the delivery of 5-fluorouracil. European Polymer Journal, 2020, 137, 109935.	2.6	3
9	Production of lipophilic nanogels by spontaneous emulsification. International Journal of Pharmaceutics, 2020, 585, 119481.	2.6	6
10	Investigating the growth of hyperbranched polymers by self-condensing vinyl RAFT copolymerization from the surface of upconversion nanoparticles. Polymer Chemistry, 2020, 11, 4313-4325.	1.9	6
11	Synthesis and functionalization of hyperbranched polymers for targeted drug delivery. Journal of Controlled Release, 2020, 321, 285-311.	4.8	83
12	Unexpected aqueous UCST behavior of a cationic comb polymer with pentaarginine side chains. European Polymer Journal, 2020, 125, 109528.	2.6	7
13	Ligand-Mediated Targeting of Cytokine Interleukin-27 Enhances Its Bioactivity InÂVivo. Molecular Therapy - Methods and Clinical Development, 2020, 17, 739-751.	1.8	13
14	Synthesis of Macromolecules Containing Phenylalanine and Aliphatic Building Blocks. Macromolecular Rapid Communications, 2018, 39, e1700764.	2.0	4
15	Orthogonal Synthesis of Xeno Nucleic Acids. Chemistry - A European Journal, 2016, 22, 17945-17948.	1.7	5
16	Dispersing Zwitterions into Comb Polymers for Nonviral Transfection: Experiments and Molecular Simulation. Biomacromolecules, 2016, 17, 546-557.	2.6	16
17	Preparation of Informationâ€Containing Macromolecules by Ligation of Dyadâ€Encoded Oligomers. Chemistry - A European Journal, 2015, 21, 11961-11965.	1.7	50
18	Sonodelivery Facilitates Sustained Luciferase Expression from an Episomal Vector in Skeletal Muscle. Materials, 2015, 8, 4608-4617.	1.3	6

Delphine Chan-Seng

#	Article	IF	CITATIONS
19	Debromination of ATRP-made Wang soluble polymer supports. Polymer, 2015, 72, 341-347.	1.8	9
20	Solid-Phase Synthesis as a Tool for the Preparation of Sequence-Defined Oligomers Based on Natural Amino Acids and Synthetic Building Blocks. ACS Symposium Series, 2014, , 103-116.	0.5	7
21	Polymer–Peptide Delivery Platforms: Effect of Oligopeptide Orientation on Polymer-Based DNA Delivery. Biomacromolecules, 2014, 15, 1328-1336.	2.6	22
22	Synthesis of Molecularly Encoded Oligomers Using a Chemoselective "AB + CD―lterative Approach. Macromolecular Rapid Communications, 2014, 35, 141-145.	2.0	105
23	Primary Structure Control of Oligomers Based on Natural and Synthetic Building Blocks. ACS Macro Letters, 2014, 3, 291-294.	2.3	20
24	Examination of zwitterionic polymers and gels subjected to mechanical constraints. Polymer, 2013, 54, 2887-2894.	1.8	12
25	Microstructure Control: An Underestimated Parameter in Recent Polymer Design. Macromolecular Chemistry and Physics, 2013, 214, 135-142.	1.1	58
26	Interleukin-27 Gene Delivery for Modifying Malignant Interactions Between Prostate Tumor and Bone. Human Gene Therapy, 2013, 24, 970-981.	1.4	22
27	Influence of Strong Electron-Donor Monomers in Sequence-Controlled Polymerizations. ACS Macro Letters, 2012, 1, 589-592.	2.3	66
28	Polymer hain Encoding: Synthesis of Highly Complex Monomer Sequence Patterns by Using Automated Protocols. Angewandte Chemie - International Edition, 2012, 51, 12254-12257.	7.2	66
29	Reconfiguring polylysine architectures for controlling polyplex binding and non-viral transfection. Biomaterials, 2011, 32, 2432-2444.	5.7	50
30	Aliphatic polyester terpolymers for stent coating and drug elution: Effect of polymer composition on drug solubility and release. Drug Delivery, 2009, 16, 304-311.	2.5	7
31	Stable free radical polymerization of n-butyl acrylate in the presence of high-temperature initiators. European Polymer Journal, 2009, 45, 211-216.	2.6	4
32	Polyester-graft-phosphorylcholine prepared by ring-opening polymerization and click chemistry. Chemical Communications, 2009, , 815-817.	2.2	37
33	Block copolymer preparation by atom transfer radical polymerization under emulsion conditions using a nanoprecipitation technique. Journal of Polymer Science Part A, 2008, 46, 625-635.	2.5	11
34	Verdazyl-Mediated Polymerization of Styrene. Macromolecular Symposia, 2007, 248, 117-125.	0.4	7
35	Verdazyl-Mediated Living-Radical Polymerization of Styrene and <i>n</i> -Butyl Acrylate. Macromolecules, 2007, 40, 8609-8616.	2.2	35
36	Synthesis and Evaluation of Sterically Hindered 1,1-Diadamantyl Nitroxide as a Low-Temperature Mediator for the Stable Free Radical Polymerization Process. Macromolecules, 2007, 40, 6224-6232.	2.2	17

0

#	Article	IF	CITATIONS
37	Living radical emulsion polymerization using the nanoprecipitation technique: An extension to atom transfer radical polymerization. Journal of Polymer Science Part A, 2006, 44, 4027-4038.	2.5	15
38	Synthesis and Characterization of Branched Polyelectrolytes. 1. Preparation of Hyperbranched Poly(acrylic acid) via Self-Condensing Atom Transfer Radical Copolymerization. Macromolecules, 2002, 35, 9270-9281.	2.2	138
39	Hybrid Nanoparticles with Hyperbranched Polymer Shells via Self-Condensing Atom Transfer Radical Polymerization from Silica Surfaces. Langmuir, 2002, 18, 3682-3693.	1.6	173

40 Verdazyl-Mediated Polymerization of Styrene., 0, , 117-125.