List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/886007/publications.pdf Version: 2024-02-01

ANNE R MCCOV

#	Article	IF	CITATIONS
1	Infrared spectroscopic signature of a hydroperoxyalkyl radical (•QOOH). Journal of Chemical Physics, 2022, 156, 014301.	1.2	8
2	A flexible approach to vibrational perturbation theory using sparse matrix methods. Journal of Chemical Physics, 2022, 156, 054107.	1.2	14
3	Exploring the Origins of Spectral Signatures of Strong Hydrogen Bonding in Protonated Water Clusters. Journal of Physical Chemistry A, 2022, 126, 1360-1368.	1.1	5
4	Preparation and Characterization of the Halogen-Bonding Motif in the Isolated Cl [–] ·IOH Complex with Cryogenic Ion Vibrational Spectroscopy. Journal of Physical Chemistry Letters, 2022, 13, 2750-2756.	2.1	9
5	Vibrational Signatures of HNO ₃ Acidity When Complexed with Microhydrated Alkali Metal lons, M ⁺ ·(HNO ₃)(H ₂ O) _{<i>n</i>=5} (M = Li, K, Na, Rb, Cs), at 20 K. Journal of Physical Chemistry A, 2022, 126, 1640-1647.	1.1	4
6	Electronic and mechanical anharmonicities in the vibrational spectra of the H-bonded, cryogenically cooled Xâ^ · HOCl (X=Cl, Br, I) complexes: Characterization of the strong anionic H-bond to an acidic C group. Journal of Chemical Physics, 2022, 156, 174303.	DH1.2	11
7	Diffusion Monte Carlo approaches for studying nuclear quantum effects in fluxional molecules. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, .	6.2	6
8	Fast Near <i>Ab Initio</i> Potential Energy Surfaces Using Machine Learning. Journal of Physical Chemistry A, 2022, 126, 4013-4024.	1.1	10
9	Diffusion Monte Carlo Approaches for Studying Large Amplitude Vibrational Motions in Molecules and Clusters. , 2022, , 145-173.		1
10	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	3.7	0
11	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	2.3	0
12	Viewpoint on ACS PHYS Division Sponsored Virtual Seminars. Journal of Physical Chemistry C, 2021, 125, 4342-4342.	1.5	0
13	Coupling of torsion and OH-stretching in <i>tert</i> butyl hydroperoxide. I. The cold and warm first OH-stretching overtone spectrum. Journal of Chemical Physics, 2021, 154, 164306.	1.2	9
14	Coupling of torsion and OH-stretching in <i>tert</i> -butyl hydroperoxide. II. The OH-stretching fundamental and overtone spectra. Journal of Chemical Physics, 2021, 154, 164307.	1.2	11
15	Computational molecular spectroscopy. Nature Reviews Methods Primers, 2021, 1, .	11.8	73
16	GPU-Accelerated Neural Network Potential Energy Surfaces for Diffusion Monte Carlo. Journal of Physical Chemistry A, 2021, 125, 5849-5859.	1.1	8
17	Using Diffusion Monte Carlo Wave Functions to Analyze the Vibrational Spectra of H ₇ O ₃ ⁺ and H ₉ O ₄ ⁺ . Journal of Physical Chemistry A, 2021, 125, 7185-7197.	1.1	5
18	Viewpoint on ACS PHYS Division Sponsored Virtual Seminars. Journal of Physical Chemistry A, 2021, 125, 1680-1680.	1.1	0

#	Article	IF	CITATIONS
19	Viewpoint on ACS PHYS Division Sponsored Virtual Seminars. Journal of Physical Chemistry B, 2021, 125, 1973-1973.	1.2	0
20	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	2.5	0
21	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	1.2	0
22	Diffusion Monte Carlo Studies on the Detection of Structural Changes in the Water Hexamer upon Isotopic Substitution. Journal of Physical Chemistry A, 2020, 124, 6903-6912.	1.1	8
23	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	2.6	0
24	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	5.3	0
25	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	1.6	0
26	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	1.7	0
27	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	1.2	0
28	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	8.8	1
29	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	2.3	0
30	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0
31	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	7.3	2
32	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	3.2	0
33	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	2.5	0
34	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	3.2	0
35	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	3.2	0
36	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679	3.2	0

#	Article	IF	CITATIONS
37	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	3.9	1
38	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	1.1	1
39	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	1.8	0
40	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	1.6	0
41	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	2.0	Ο
42	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
43	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	1.3	Ο
44	Guided Diffusion Monte Carlo: A Method for Studying Molecules and Ions That Display Large Amplitude Vibrational Motions. Journal of Physical Chemistry A, 2020, 124, 9567-9577.	1.1	7
45	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
46	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	2.1	1
47	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	2.5	0
48	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	5.3	1
49	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	1.8	Ο
50	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	1.5	0
51	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	1.3	Ο
52	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	1.2	1
53	Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.	2.5	0
54	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	4.0	0

#	Article	IF	CITATIONS
55	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	7.3	2
56	Isolating the Contributions of Specific Network Sites to the Diffuse Vibrational Spectrum of Interfacial Water with Isotopomer-Selective Spectroscopy of Cold Clusters. Journal of Physical Chemistry A, 2020, 124, 10393-10406.	1.1	16
57	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	1.2	Ο
58	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.0	0
59	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	1.3	Ο
60	The Role of Tunneling in the Spectra of H ₅ ⁺ and D ₅ ⁺ up to 7300 cm ^{–1} . Journal of Physical Chemistry A, 2020, 124, 4427-4439.	1.1	5
61	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	1.6	0
62	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	2.0	0
63	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	4.0	5
64	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	1.5	0
65	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	2.1	0
66	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	1.9	0
67	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	2.5	Ο
68	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	2.3	0
69	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	1.7	Ο
70	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	3.2	0
71	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	1.1	0
72	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	1.3	0

#	Article	IF	CITATIONS
73	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	3.2	Ο
74	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	3.2	0
75	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	1.7	0
76	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	1.9	0
77	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	2.4	0
78	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	2.0	0
79	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	1.6	0
80	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	2.3	0
81	Virtual Issue on New Tools and Methods in Physical Chemistry Research. Journal of Physical Chemistry A, 2020, 124, 4323-4324.	1.1	2
82	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	2.4	4
83	Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.	4.0	13
84	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	1.4	1
85	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	23.0	2
86	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	5.5	1
87	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	2.6	0
88	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	2.9	0
89	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	2.2	0
90	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	4.5	5

6

#	Article	IF	CITATIONS
91	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	1.1	0
92	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	6.6	1
93	Spectroscopic Signatures of Mode-Dependent Tunnel Splitting in the Iodide–Water Binary Complex. Journal of Physical Chemistry A, 2020, 124, 2991-3001.	1.1	11
94	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	7.6	0
95	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	1.1	0
96	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	8.8	0
97	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	2.5	0
98	Characteristics of Impactful Computational Contributions to The Journal of Physical Chemistry A. Journal of Physical Chemistry A, 2020, 124, 5059-5060.	1.1	3
99	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	1.8	0
100	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	1.2	1
101	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	2.4	0
102	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	1.2	0
103	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	1.8	0
104	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	2.4	0
105	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	1.5	0
106	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	1.9	0
107	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.0	0
108	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	1.8	0

#	Article	IF	CITATIONS
109	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	1.1	0
110	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	1.7	0
111	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	2.5	0
112	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	2.3	0
113	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	1.7	0
114	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	1.2	0
115	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	7.6	0
116	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	2.6	0
117	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	23.0	0
118	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	4.6	0
119	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	1.6	0
120	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	2.3	0
121	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	1.8	0
122	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	1.4	1
123	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	2.9	0
124	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	1.1	0
125	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	4.5	0
126	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	4.0	0

#	Article	IF	CITATIONS
127	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	2.5	Ο
128	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	1.8	0
129	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	6.6	3
130	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	1.9	0
131	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	1.1	О
132	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	2.4	0
133	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	2.6	1
134	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	1.6	1
135	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	2.0	Ο
136	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	2.4	0
137	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	1.2	Ο
138	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	3.9	0
139	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
140	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	1.8	0
141	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	2.3	Ο
142	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	1.5	0
143	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	2.3	0
144	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	2.3	1

#	Article	IF	CITATIONS
145	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	1.7	1
146	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	3.2	0
147	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	4.6	0
148	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	1.1	0
149	An Efficient Approach for Studies of Water Clusters Using Diffusion Monte Carlo. Journal of Physical Chemistry A, 2019, 123, 8063-8070.	1.1	13
150	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry A, 2019, 123, 5837-5848.	1.1	2
151	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry B, 2019, 123, 5973-5984.	1.2	1
152	Going large(r): general discussion. Faraday Discussions, 2019, 217, 476-513.	1.6	1
153	Controlling internal degrees: general discussion. Faraday Discussions, 2019, 217, 138-171.	1.6	1
154	Pushing resolution in frequency and time: general discussion. Faraday Discussions, 2019, 217, 290-321.	1.6	1
155	Exotic systems: general discussion. Faraday Discussions, 2019, 217, 601-622.	1.6	0
156	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry C, 2019, 123, 17063-17074.	1.5	1
157	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry Letters, 2019, 10, 4051-4062.	2.1	2
158	Young Scientists Virtual Special Issue. Journal of Physical Chemistry C, 2019, 123, 20689-20690.	1.5	0
159	Young Scientists Virtual Special Issue. Journal of Physical Chemistry A, 2019, 123, 7335-7336.	1.1	1
160	Young Scientists Virtual Special Issue. Journal of Physical Chemistry B, 2019, 123, 7241-7242.	1.2	0
161	Disentangling the Complex Vibrational Mechanics of the Protonated Water Trimer by Rational Control of Its Hydrogen Bonds. Journal of Physical Chemistry A, 2019, 123, 7965-7972.	1.1	16
162	Editorial for January 2019 for JPC A/B/C. Journal of Physical Chemistry B, 2019, 123, 1-9.	1.2	2

ANNE B MCCOY

#	Article	IF	CITATIONS
163	Statistical Analysis of the Effect of Deuteration on Quantum Delocalization in CH ₅ ⁺ . Journal of Physical Chemistry A, 2019, 123, 4623-4631.	1.1	4
164	Evaluation of Matrix Elements Using Diffusion Monte Carlo Wave Functions. Journal of Physical Chemistry A, 2019, 123, 4370-4378.	1.1	4
165	CH Stretch Activation of CH ₃ CHOO: Deep Tunneling to Hydroxyl Radical Products. Journal of Physical Chemistry A, 2019, 123, 2559-2569.	1.1	20
166	Viewpoint: New Physical Insights from Kinetics Studies. Journal of Physical Chemistry A, 2019, 123, 3057-3057.	1.1	4
167	Beyond Badger's Rule: The Origins and Generality of the Structure–Spectra Relationship of Aqueous Hydrogen Bonds. Journal of Physical Chemistry Letters, 2019, 10, 918-924.	2.1	52
168	Editorial for January 2019 for JPC A/B/C. Journal of Physical Chemistry C, 2019, 123, 1-9.	1.5	3
169	Editorial for January 2019 for JPC A/B/C. Journal of Physical Chemistry A, 2019, 123, 1-9.	1.1	2
170	Deconstructing water's diffuse OH stretching vibrational spectrum with cold clusters. Science, 2019, 364, 275-278.	6.0	53
171	Virtual Issue Highlighting Articles That Describe New Methodologies Soon To Be Considered for Publication in JPC. Journal of Physical Chemistry A, 2018, 122, 1925-1925.	1.1	1
172	Editorial for January 2018 for JPC A/B/C. Journal of Physical Chemistry A, 2018, 122, 1-7.	1.1	1
173	Editorial for January 2018 for JPC A/B/C. Journal of Physical Chemistry C, 2018, 122, 1-7.	1.5	2
174	Editorial for January 2018 for JPC A/B/C. Journal of Physical Chemistry B, 2018, 122, 1-7.	1.2	2
175	New Sections for <i>JPC A</i> / <i>B</i> / <i>C</i> . Journal of Physical Chemistry A, 2018, 122, 2611-2611.	1.1	0
176	New Sections for JPC A/B/C. Journal of Physical Chemistry C, 2018, 122, 5215-5215.	1.5	0
177	New Sections for JPC A/B/C. Journal of Physical Chemistry B, 2018, 122, 2703-2703.	1.2	0
178	Precise characterisation of isolated molecules: general discussion. Faraday Discussions, 2018, 212, 137-155.	1.6	1
179	Quantum dynamics of isolated molecules: general discussion. Faraday Discussions, 2018, 212, 281-306.	1.6	0
180	Molecules in confinement in liquid solvents: general discussion. Faraday Discussions, 2018, 212, 383-397.	1.6	1

#	Article	IF	CITATIONS
181	Tag-Free and Isotopomer-Selective Vibrational Spectroscopy of the Cryogenically Cooled H ₉ O ₄ ⁺ Cation with Two-Color, IR–IR Double-Resonance Photoexcitation: Isolating the Spectral Signature of a Single OH Group in the Hydronium Ion Core. Journal of Physical Chemistry A, 2018, 122, 9275-9284.	1.1	27
182	Near-Infrared Spectroscopy and Anharmonic Theory of Protonated Water Clusters: Higher Elevations in the Hydrogen Bonding Landscape. Journal of Physical Chemistry Letters, 2018, 9, 5664-5671.	2.1	20
183	Spectral signatures of proton delocalization in H ⁺ (H ₂ O) _{n=1â^'4} ions. Faraday Discussions, 2018, 212, 443-466.	1.6	18
184	Hidden role of intermolecular proton transfer in the anomalously diffuse vibrational spectrum of a trapped hydronium ion. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4706-E4713.	3.3	47
185	Tunneling effects in the unimolecular decay of (CH3)2COO Criegee intermediates to OH radical products. Journal of Chemical Physics, 2017, 146, 134307.	1.2	34
186	Virtual Issue in Honor of the 150th Birthday of Marie Curie: Highlighting Female Physical Chemists. Journal of Physical Chemistry C, 2017, 121, 23849-23851.	1.5	0
187	Isolation of site-specific anharmonicities of individual water molecules in the lâ^'·(H2O)2 complex using tag-free, isotopomer selective IR-IR double resonance. Chemical Physics Letters, 2017, 690, 159-171.	1.2	38
188	Experimental and Theoretical Studies of the F [•] + H–F Transition-State Region by Photodetachment of [F–H–F] ^{â^'} . Journal of Physical Chemistry A, 2017, 121, 7895-7902.	1.1	5
189	Disentangling the Complex Vibrational Spectrum of the Protonated Water Trimer, H ⁺ (H ₂ 0) ₃ , with Two-Color IR-IR Photodissociation of the Bare Ion and Anharmonic VSCF/VCI Theory. Journal of Physical Chemistry Letters, 2017, 8, 3782-3789.	2.1	44
190	Role of Torsion-Vibration Coupling in the Overtone Spectrum and Vibrationally Mediated Photochemistry of CH3OOH and HOOH. Journal of Physical Chemistry A, 2017, 121, 9262-9274.	1.1	11
191	Modeling the CH Stretch/Torsion/Rotation Couplings in Methyl Peroxy (CH ₃ OO). Journal of Physical Chemistry A, 2017, 121, 9619-9630.	1.1	6
192	Virtual Issue in Honor of the 150th Birthday of Marie Curie: Highlighting Female Physical Chemists. Journal of Physical Chemistry A, 2017, 121, 8185-8187.	1.1	0
193	Virtual Issue in Honor of the 150th Birthday of Marie Curie: Highlighting Female Physical Chemists. Journal of Physical Chemistry Letters, 2017, 8, 5306-5308.	2.1	0
194	Virtual Issue in Honor of the 150th Birthday of Marie Curie: Highlighting Female Physical Chemists. Journal of Physical Chemistry B, 2017, 121, 9983-9985.	1.2	0
195	"New Physical Insights―in Theoretical and Computational Studies. Journal of Physical Chemistry A, 2017, 121, 4850-4850.	1.1	6
196	Considering "Physical Insights―in Theoretical Studies of Gas Phase Processes. Journal of Physical Chemistry A, 2017, 121, 4853-4854.	1.1	1
197	Spectroscopic snapshots of the proton-transfer mechanism in water. Science, 2016, 354, 1131-1135.	6.0	213
198	Communication: Real time observation of unimolecular decay of Criegee intermediates to OH radical products. Journal of Chemical Physics, 2016, 144, 061102.	1.2	99

ANNE B MCCOY

#	Article	IF	CITATIONS
199	Deep tunneling in the unimolecular decay of CH3CHOO Criegee intermediates to OH radical products. Journal of Chemical Physics, 2016, 145, 234308.	1.2	56
200	Photoelectron spectroscopy of the hydroxymethoxide anion, H2C(OH)Oâ^'. Journal of Chemical Physics, 2016, 145, 124317.	1.2	8
201	Characterization of the primary hydration shell of the hydroxide ion with H2 tagging vibrational spectroscopy of the OHâ^' â‹ (H2O) <i>n</i> =2,3 and ODâ^' â‹ (D2O) <i>n</i> =2,3 clusters. Journal of Chemical Physics, 2016, 145, 134304.	1.2	26
202	Infrared Stark and Zeeman spectroscopy of OH–CO: The entrance channel complex along the OH + CO → trans-HOCO reaction pathway. Journal of Chemical Physics, 2016, 145, 124310.	1.2	6
203	Calculating rovibrationally excited states of H2D+ and HD <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:msubsup><mml:mrow /><mml:mn>2</mml:mn><mml:mo>+</mml:mo></mml:mrow </mml:msubsup> by combination of fixed</mml:math 	1.2	4
204	node and multi-state rotational diffusion Monte Carlo. Chemical Physics Letters, 2016, 645, 15-19. Manifestations of Torsion-CH Stretch Coupling in the Infrared Spectrum of CH ₃ OO. Journal of Physical Chemistry A, 2016, 120, 4827-4837.	1.1	9
205	Photoelectron Spectroscopy of <i>cis-</i> Nitrous Acid Anion (<i>cis-</i> HONO [–]). Journal of Physical Chemistry A, 2016, 120, 1652-1660.	1.1	7
206	Probing the Relationship Between Large-Amplitude Motions in H5+and Proton Exchange Between H3+and H2. Journal of Physical Chemistry A, 2015, 119, 12109-12118.	1.1	9
207	Diffuse Vibrational Signature of a Single Proton Embedded in the Oxalate Scaffold, HO ₂ CCO ₂ [–] . Journal of Physical Chemistry A, 2015, 119, 13018-13024.	1.1	29
208	Thermodynamics of Water Dimer Dissociation in the Primary Hydration Shell of the lodide Ion with Temperature-Dependent Vibrational Predissociation Spectroscopy. Journal of Physical Chemistry A, 2015, 119, 1859-1866.	1.1	37
209	Persistence of Dual Free Internal Rotation in NH ₄ ⁺ (H ₂ O)·He _{<i>n</i>=O–3} Ion–Molecule Complexes: Expanding the Case for Quantum Delocalization in He Tagging. Journal of Physical Chemistry A, 2015, 119, 4170,4176	1.1	38
210	Comparison of the local binding motifs in the imidazolium-based ionic liquids [EMIM][BF4] and [EMMIM][BF4] through cryogenic ion vibrational predissociation spectroscopy: Unraveling the roles of anharmonicity and intermolecular interactions. Journal of Chemical Physics, 2015, 142, 064306.	1.2	35
211	An Overview of the Changes in the 2015 ACS Guidelines for Bachelor's Degree Programs. Journal of Chemical Education, 2015, 92, 965-968.	1.1	39
212	Modelling rotations, vibrations, and rovibrational couplings in astructural molecules – a case study based on the H⁺₅ molecular ion. Molecular Physics, 2015, 113, 1873-1883.	0.8	15
213	Rotation/Torsion Coupling in H ₅ ⁺ , D ₅ ⁺ , H ₄ D ⁺ , and HD ₄ ⁺ Using Diffusion Monte Carlo. Journal of Physical Chemistry A, 2015, 119, 9405-9413.	1.1	13
214	The role of large-amplitude motions in the spectroscopy and dynamics of H5+. Journal of Chemical Physics, 2014, 140, 114305.	1.2	6
215	Simultaneous Evaluation of Multiple Rotationally Excited States of H ₃ ⁺ , H ₃ O ⁺ , and CH ₅ ⁺ Using Diffusion Monte Carlo. Journal of Physical Chemistry A, 2014, 118, 7206-7220.	1.1	15
216	Nonadiabatic photofragmentation dynamics of BrCNâ [~] . Journal of Chemical Physics, 2014, 141, 084305.	1.2	7

ANNE B MCCOY

#	Article	IF	CITATIONS
217	Microhydration of Contact Ion Pairs in M ²⁺ OH ^{â€"} (H ₂ O) _{<i>n</i>=1â€"5} (M = Mg, Ca) Clusters: Spectral Manifestations of a Mobile Proton Defect in the First Hydration Shell. Journal of Physical Chemistry A, 2014, 118, 7590-7597.	1.1	52
218	The Role of Electrical Anharmonicity in the Association Band in the Water Spectrum. Journal of Physical Chemistry B, 2014, 118, 8286-8294.	1.2	52
219	Infrared-driven unimolecular reaction of CH ₃ CHOO Criegee intermediates to OH radical products. Science, 2014, 345, 1596-1598.	6.0	125
220	Vibrational Spectroscopy of the Water–Nitrate Complex in the O–H Stretching Region. Journal of Physical Chemistry A, 2014, 118, 8188-8197.	1.1	39
221	Potential energy surfaces and properties of ICN ^{â^'} and ICN. International Journal of Quantum Chemistry, 2013, 113, 366-374.	1.0	12
222	Revision of the ACS Guidelines for Bachelor's Degree Programs. Journal of Chemical Education, 2013, 90, 398-400.	1.1	12
223	Investigation of the Structure and Spectroscopy of H5+ Using Diffusion Monte Carlo. Journal of Physical Chemistry A, 2013, 117, 11725-11736.	1.1	28
224	Diffusion Monte Carlo in Internal Coordinates. Journal of Physical Chemistry A, 2013, 117, 7009-7018.	1.1	17
225	Origin of the diffuse vibrational signature of a cyclic intramolecular proton bond: Anharmonic analysis of protonated 1,8-disubstituted naphthalene ions. Journal of Chemical Physics, 2013, 139, 024301.	1.2	27
226	Using fixed-node diffusion Monte Carlo to investigate the effects of rotation-vibration coupling in highly fluxional asymmetric top molecules: Application to H2D+. Journal of Chemical Physics, 2013, 138, 034105.	1.2	10
227	Sub-Doppler infrared spectroscopy of CH2D radical in a slit supersonic jet: Isotopic symmetry breaking in the CH stretching manifold. Journal of Chemical Physics, 2012, 136, 234308.	1.2	7
228	Unraveling rotation-vibration mixing in highly fluxional molecules using diffusion Monte Carlo: Applications to H3+ and H3O+. Journal of Chemical Physics, 2012, 136, 074101.	1.2	8
229	Signatures of Large-Amplitude Vibrations in the Spectra of H ₅ ⁺ and D ₅ ⁺ . Journal of Physical Chemistry Letters, 2012, 3, 3690-3696.	2.1	22
230	Vibrational manifestations of strong non-Condon effects in the H3O+·X3 (X = Ar, N2, CH4, H2O) complexes: A possible explanation for the intensity in the "association band―in the vibrational spectrum of water. Physical Chemistry Chemical Physics, 2012, 14, 7205.	1.3	82
231	Studying Properties of Floppy Molecules Using Diffusion Monte Carlo. ACS Symposium Series, 2012, , 145-155.	0.5	10
232	Unraveling the Anomalous Solvatochromic Response of the Formate Ion Vibrational Spectrum: An Infrared, Ar-Tagging Study of the HCO ₂ ^{Â⁻} , DCO ₂ ^{Â⁻} , and HCO ₂ ^{Â⁻} Â ⁻ K ₂ O Ions. Journal of Physical Chemistry Letters, 2011, 2, 2437-2441	2.1	49
233	Unraveling Anharmonic Effects in the Vibrational Predissociation Spectra of H ₅ O ₂ ⁺ and Its Deuterated Analogues. Journal of Physical Chemistry A, 2011, 115, 5847-5858.	1.1	75
234	Curious properties of the Morse oscillator. Chemical Physics Letters, 2011, 501, 603-607.	1.2	10

#	Article	IF	CITATIONS
235	Anharmonicities and Isotopic Effects in the Vibrational Spectra of X ^{â^'} ·H ₂ O, ·HDO, and ·D ₂ O [X = Cl, Br, and I] Binary Complexes. Journal of Physical Chemistry A, 2010, 114, 1556-1568.	1.1	61
236	How the Shape of an H-Bonded Network Controls Proton-Coupled Water Activation in HONO Formation. Science, 2010, 327, 308-312.	6.0	99
237	The Role of Torsion/Torsion Coupling in the Vibrational Spectrum of Cisâ^'Cis HOONO. Journal of Physical Chemistry A, 2010, 114, 1324-1333.	1.1	10
238	Minimum Energy Path Diffusion Monte Carlo Approach for Investigating Anharmonic Quantum Effects: Applications to the CH ₃ ⁺ + H ₂ Reaction. Journal of Physical Chemistry Letters, 2010, 1, 562-567.	2.1	13
239	Generating Spectra from Ground-State Wave Functions: Unraveling Anharmonic Effects in the OH ^{â^'} ·H ₂ O Vibrational Predissociation Spectrum. Journal of Physical Chemistry A, 2009, 113, 7346-7352.	1.1	39
240	Diffusion Monte Carlo Approaches for Evaluating Rotationally Excited States of Symmetric Top Molecules: Application to H ₃ O ⁺ and D ₃ O ⁺ . Journal of Physical Chemistry A, 2009, 113, 12706-12714.	1.1	21
241	Vibrationally Induced Proton Transfer in F ^{â^'} (H ₂ O) and F ^{â^'} (D ₂ O). Journal of Physical Chemistry A, 2008, 112, 12337-12344.	1.1	42
242	An H/D Isotopic Substitution Study of the H ₅ O ₂ ⁺ ·Ar Vibrational Predissociation Spectra:  Exploring the Putative Role of Fermi Resonances in the Bridging Proton Fundamentals. Journal of Physical Chemistry B, 2008, 112, 321-327.	1.2	92
243	Why Does Argon Bind to Deuterium? Isotope Effects and Structures of Ar·H ₅ O ₂ ⁺ Complexes. Journal of Physical Chemistry A, 2008, 112, 6074-6078.	1.1	33
244	Effect of methyl rotation on the electronic spectrum of the methyl peroxy radical. Journal of Chemical Physics, 2007, 127, 044310.	1.2	24
245	Prying Apart a Water Molecule with Anionic H-Bonding:Â A Comparative Spectroscopic Study of the X-·H2O (X = OH, O, F, Cl, and Br) Binary Complexes in the 600â^'3800 cm-1Region. Journal of Physical Chemistry A, 2006, 110, 4943-4952.	1.1	157
246	Evolution of Structure in CH5+ and Its Deuterated Analogues. Journal of Physical Chemistry A, 2006, 110, 8213-8220.	1.1	45
247	Quantum Deconstruction of the Infrared Spectrum of CH5+. Science, 2006, 311, 60-63.	6.0	97
248	Diffusion Monte Carlo approaches for investigating the structure and vibrational spectra of fluxional systems. International Reviews in Physical Chemistry, 2006, 25, 77-107.	0.9	110
249	Deuteration Effects on the Structure and Infrared Spectrum of CH5+. Journal of the American Chemical Society, 2006, 128, 3478-3479.	6.6	45
250	Vibrational Excited States by Diffusion Monte Carlo. ACS Symposium Series, 2006, , 147-164.	0.5	9
251	The vibrational predissociation spectra of the H5O2+â^™RGn(RG=Ar,Ne) clusters: Correlation of the solvent perturbations in the free OH and shared proton transitions of the Zundel ion. Journal of Chemical Physics, 2005, 122, 244301.	1.2	228
252	Quantum studies of the vibrations in H3O2â^' and D3O2â^'. Journal of Chemical Physics, 2005, 123, 064317.	1.2	83

#	Article	IF	CITATIONS
253	Role of OH-stretch/torsion coupling and quantum yield effects in the first OH overtone spectrum of cis-cis HOONO. Journal of Chemical Physics, 2005, 122, 104311.	1.2	23
254	Full-dimensional vibrational calculations for H5O2+ using an ab initio potential energy surface. Journal of Chemical Physics, 2005, 122, 061101.	1.2	97
255	Argon Predissociation Spectroscopy of the OH-·H2O and Cl-·H2O Complexes in the 1000â^'1900 cm-1Region:Â Intramolecular Bending Transitions and the Search for the Shared-Proton Fundamental in the Hydroxide Monohydrate. Journal of Physical Chemistry A, 2005, 109, 571-575.	1.1	56
256	Fundamental Excitations of the Shared Proton in the H3O2- and H5O2+ Complexes. Journal of Physical Chemistry A, 2005, 109, 1487-1490.	1.1	168
257	Transition State Dynamics of Arn·(IHI) (n= 0â^'20). Journal of Physical Chemistry A, 2005, 109, 1272-1278.	1.1	6
258	A combined experimental/theoretical investigation of the He + ICl interactions: Determination of the binding energies of the T-shaped and linear Heâ<ī35Cl(X,v″ = 0) conformers. Physical Chemistry Chemical Physics, 2004, 6, 5275-5282.	1.3	31
259	Ab Initio Diffusion Monte Carlo Calculations of the Quantum Behavior of CH5+ in Full Dimensionality. Journal of Physical Chemistry A, 2004, 108, 4991-4994.	1.1	87
260	Multiple Configuration Quantum/Classical Studies of the Photodissociation Dynamics of Arâ^'H2Oâ€. Journal of Physical Chemistry A, 2004, 108, 8819-8826.	1.1	5
261	Multiple-Configuration Quantum/Classical Studies of the Photodissociation Dynamics of H2O. Journal of Physical Chemistry A, 2003, 107, 7220-7229.	1.1	8
262	Using Diffusion Monte Carlo to Evaluate the Initial Conditions for Classical Studies of the Photodissociation Dynamics of HCl Dimer. Journal of Physical Chemistry A, 2003, 107, 4-12.	1.1	17
263	Quantum/classical studies of O(3P)+Arâ‹HCl collision dynamics. Journal of Chemical Physics, 2003, 119, 1996-2003.	1.2	6
264	Theoretical studies of the vibrational states of Ne2SH and Ne2OH (Ã 2Σ+). Journal of Chemical Physics, 2002, 116, 9677-9689.	1.2	12
265	Theoretical studies of rotational and spin–orbit predissociation of the Ne·XH (X̃ 2Î, X = O,S) var Waals complexes Physical Chemistry Chemical Physics, 2002, 4, 1564-1570.	n der 1.3	3
266	Investigating the Adiabatic Approximation in Quantum Mechanics through the Analysis of Two Coupled Harmonic Oscillators. Journal of Chemical Education, 2001, 78, 401.	1.1	4
267	Quantum Monte Carlo studies of the structure and spectroscopy of NenOH (Ã 2Σ+, n=1–4) van der Wa complexes. Journal of Chemical Physics, 2001, 114, 10278-10287.	als 1.2	14
268	Diffusion quantum Monte Carlo on multiple-potential surfaces. Chemical Physics Letters, 2000, 321, 71-77.	1.2	11
269	Theoretical studies of the X̃ 2Î and Ã 2Σ+ states of Heâ‹SH and Neâ‹SH complexes. Journal of Che 2000, 113, 9549-9561.	mical Phys 1.2	sics,
270	Multiple configuration quantum/classical treatments of reaction dynamics. Journal of Chemical	1.2	20

Multiple configuration quantum/cla Physics, 2000, 113, 10605-10614.

1.2 20

#	Article	IF	CITATIONS
271	Transition State Dynamics of Arn(ClHCl) (n= 0â^5):Â Effects of Complex Formation on the Dynamics and Spectroscopy. Journal of Physical Chemistry A, 2000, 104, 644-651.	1.1	19
272	Adiabatic diffusion Monte Carlo approaches for studies of ground and excited state properties of van der Waals complexes. Journal of Chemical Physics, 1999, 110, 5481-5484.	1.2	40
273	Rotation–vibration interactions in (HF)2. I. Using parallel supercomputers to calculate rotation–vibration energy levels. Journal of Chemical Physics, 1999, 110, 2354-2364.	1.2	32
274	Rotation–vibration interactions in (HF)2. II. Rotation–vibration interactions in low-lying vibrational states. Journal of Chemical Physics, 1999, 110, 2365-2375.	1.2	18
275	High resolution electronic spectroscopy of Krâ‹OH/D and an empirical potential energy surface. Journal of Chemical Physics, 1999, 110, 1508-1520.	1.2	16
276	An empirical potential energy surface for the Ne–OH/D complexes. Journal of Chemical Physics, 1999, 111, 10053-10060.	1.2	9
277	High resolution electronic spectroscopy and an empirical potential energy surface for Neâ‹SH/D. Journal of Chemical Physics, 1999, 110, 5065-5078.	1.2	17
278	Time-dependent quantum studies of the O(3P)+HCl(X 1Σ+) reaction. Journal of Chemical Physics, 1999, 110, 11221-11232.	1.2	31
279	Structure and spectroscopy of NenSHâ€,(Ã 2Σ+) complexes using adiabatic diffusion Monte Carlo (ADMC). Journal of Chemical Physics, 1999, 111, 9203-9212.	1.2	13
280	Theoretical investigations of the lifetime of SH and SD (Ãf 2Σ+) in Mâ⊄SH/D (M=Ne,Ar,Kr) complexes. Journa of Chemical Physics, 1998, 109, 170-176.	 1.2	14
281	The bending dynamics of acetylene. Journal of Chemical Physics, 1996, 105, 459-468.	1.2	54
282	Quantum, semiclassical and classical dynamics of the bending modes of acetylene. Journal of Chemical Physics, 1996, 105, 469-478.	1.2	66
283	An accurate quartic force field for formaldehyde. Journal of Chemical Physics, 1996, 104, 480-487.	1.2	69
284	Transition state dynamics of X + HX reactions using the time-dependent self-consistent field approximation. Molecular Physics, 1995, 85, 965-979.	0.8	7
285	Determining potentialâ€energy surfaces from spectra: An iterative approach. Journal of Chemical Physics, 1992, 97, 2938-2947.	1.2	22
286	An algebraic approach to calculating rotation-vibration spectra of polyatomic molecules. Molecular Physics, 1992, 77, 697-708.	0.8	13
287	Rotation–vibration interactions in highly excited states of SO2and H2CO. Journal of Chemical Physics, 1991, 95, 7449-7465.	1.2	87
288	Perturbative calculations of vibrational (J=0) energy levels of linear molecules in normal coordinate representations. Journal of Chemical Physics, 1991, 95, 3476-3487.	1.2	88

#	Article	IF	CITATIONS
289	Calculation of infrared intensities of highly excited vibrational states of HCN using Van Vleck perturbation theory. Journal of Chemical Physics, 1991, 95, 3488-3493.	1.2	42
290	Perturbative approaches to highly excited molecular vibrations of H2O, D2O, and HDO. Journal of Chemical Physics, 1990, 92, 1893-1901.	1.2	65