Alessandro Alberto Casazza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/885992/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design and evaluation of non-conventional extraction for bioactive compounds recovery from spent coffee (Coffea arabica L.) grounds. Chemical Engineering Research and Design, 2022, 177, 418-430.	2.7	11
2	Use of Hydrogen as Fuel: A Trend of the 21st Century. Energies, 2022, 15, 311.	1.6	49
3	A Study of the Pyrolysis Products of Kraft Lignin. Energies, 2022, 15, 991.	1.6	3
4	Arthrospira platensis Cultivation in a Bench-Scale Helical Tubular Photobioreactor. Applied Sciences (Switzerland), 2022, 12, 1311.	1.3	5
5	A Comprehensive Optimization of Ultrasound-Assisted Extraction for Lycopene Recovery from Tomato Waste and Encapsulation by Spray Drying. Processes, 2022, 10, 308.	1.3	17
6	Optimization and modeling of solid-liquid multivariable extractor (SoLVE): A new solution for tomato waste valorization. Chemical Engineering Research and Design, 2022, 182, 465-477.	2.7	1
7	Winery waste valorisation as microalgae culture medium: A step forward for food circular economy. Separation and Purification Technology, 2022, 293, 121088.	3.9	8
8	Enhanced Oil Removal by a Non-Toxic Biosurfactant Formulation. Energies, 2021, 14, 467.	1.6	10
9	Polyphenols from <scp>Nerone Gold</scp> 26/6, a new pigmented rice, via nonâ€conventional extractions: antioxidant properties and biological validation. Journal of Chemical Technology and Biotechnology, 2021, 96, 1691-1699.	1.6	6
10	Repetitive non-destructive extraction of lipids from Chlorella vulgaris grown under stress conditions. Bioresource Technology, 2021, 326, 124798.	4.8	5
11	Chemical Characterization of Microcystis aeruginosa for Feed and Energy Uses. Energies, 2021, 14, 3013.	1.6	6
12	Chlorella vulgaris and Arthrospira platensis growth in a continuous membrane photobioreactor using industrial winery wastewater. Algal Research, 2021, 60, 102519.	2.4	14
13	Kinetics and Isotherms of Mercury Biosorption by Dry Biomass of <i>Arthrospira (Spirulina) platensis</i> . Chemical Engineering and Technology, 2020, 43, 240-247.	0.9	4
14	Soil Bioremediation: Overview of Technologies and Trends. Energies, 2020, 13, 4664.	1.6	85
15	A Bioactive Olive Pomace Extract Prevents the Death of Murine Cortical Neurons Triggered by NMDAR Over-Activation. Molecules, 2020, 25, 4385.	1.7	4
16	Winery Wastewater Treatment by Microalgae to Produce Low-Cost Biomass for Energy Production Purposes. Energies, 2020, 13, 2490.	1.6	22
17	Thermocatalytic Pyrolysis of Exhausted Arthrospira platensis Biomass after Protein or Lipid Recovery. Energies, 2020, 13, 5246.	1.6	6
18	Production of carbon-based biofuels by pyrolysis of exhausted Arthrospira platensis biomass after protein or lipid recovery. Fuel Processing Technology, 2020, 201, 106336.	3.7	25

#	Article	IF	CITATIONS
19	Polyphenols from apple skins: A study on microwave-assisted extraction optimization and exhausted solid characterization. Separation and Purification Technology, 2020, 240, 116640.	3.9	55
20	Bioactive compounds and value-added applications of cupuassu (Theobroma grandiflorum Schum.) agroindustrial by-product. Food Science and Technology, 2020, 40, 401-407.	0.8	22
21	The role of heating step in microwave-assisted extraction of polyphenols from spent coffee grounds. Food and Bioproducts Processing, 2019, 114, 227-234.	1.8	31
22	Eco-sustainable recovery of antioxidants from spent coffee grounds by microwave-assisted extraction: Process optimization, kinetic modeling and biological validation. Food and Bioproducts Processing, 2019, 114, 31-42.	1.8	39
23	Improved probiotic survival to in vitro gastrointestinal stress in a mousse containing Lactobacillus acidophilus La-5 microencapsulated with inulin by spray drying. LWT - Food Science and Technology, 2019, 99, 404-410.	2.5	68
24	Bioactive compounds and antioxidant potential for polyphenol-rich cocoa extract obtained by agroindustrial residue. Natural Product Research, 2019, 33, 589-592.	1.0	10
25	Cell protection from Ca ²⁺ -overloading by bioactive molecules extracted from olive pomace. Natural Product Research, 2019, 33, 1449-1455.	1.0	5
26	Optimization of spray drying conditions to microencapsulate cupuassu (<i>Theobroma) Tj ETQq0 0 0 rgBT /Over</i>	lock 10 Tf 1.0	50,462 Td (g
27	Effect of pulsed electric fields and high pressure homogenization on the aqueous extraction of intracellular compounds from the microalgae Chlorella vulgaris. Algal Research, 2018, 31, 60-69.	2.4	142
28	Optimization of spray drying microencapsulation of olive pomace polyphenols using Response Surface Methodology and Artificial Neural Network. LWT - Food Science and Technology, 2018, 93, 220-228.	2.5	52
29	Production of fermented skim milk supplemented with different grape pomace extracts: Effect on viability and acidification performance of probiotic cultures. PharmaNutrition, 2018, 6, 64-68.	0.8	23
30	Polyphenolic extract attenuates fatty acid-induced steatosis and oxidative stress in hepatic and endothelial cells. European Journal of Nutrition, 2018, 57, 1793-1805.	1.8	31
31	Immobilization of Aspergillus ficuum tannase in calcium alginate beads and its application in the treatment of boldo (Peumus boldus) tea. International Journal of Biological Macromolecules, 2018, 118, 1989-1994.	3.6	20
32	Microencapsulation of <i>Theobroma cacao</i> L. waste extract: optimization using response surface methodology. Journal of Microencapsulation, 2017, 34, 111-120.	1.2	10
33	Recovery of phenolic compounds of food concern from Arthrospira platensis by green extraction techniques. Algal Research, 2017, 25, 391-401.	2.4	28
34	Comparison of Response Surface Methodology and Artificial Neural Network for Modeling Xyloseâ€ŧoâ€Xylitol Bioconversion. Chemical Engineering and Technology, 2017, 40, 122-129.	0.9	8
35	Influence of ethanol/water ratio in ultrasound and highâ€pressure/highâ€temperature phenolic compound extraction from agriâ€food waste. International Journal of Food Science and Technology, 2016, 51, 349-358.	1.3	52
36	Pyrolysis of grape marc before and after the recovery of polyphenol fraction. Fuel Processing Technology, 2016, 153, 121-128.	3.7	24

#	Article	IF	CITATIONS
37	<i>Chlorella vulgaris</i> as a lipid source: Cultivation on air and seawaterâ€simulating medium in a helicoidal photobioreactor. Biotechnology Progress, 2016, 32, 279-284.	1.3	18
38	A new bioenergetic and thermodynamic approach to batch photoautotrophic growth of Arthrospira (Spirulina) platensis in different photobioreactors and under different light conditions. Bioresource Technology, 2016, 207, 220-228.	4.8	25
39	Influence of High-Pressure/High-Temperature Extraction on the Recovery of Phenolic Compounds from Barley Grains. Journal of Food Biochemistry, 2015, 39, 696-707.	1.2	5
40	Kinetic and Isothermal Modelling of the Adsorption of Compounds from Olive Mill Wastewater onto Activated Carbon. Food Technology and Biotechnology, 2015, 53, 207-214.	0.9	29
41	Microencapsulation of phenolic compounds from olive pomace using spray drying: A study of operative parameters. LWT - Food Science and Technology, 2015, 62, 177-186.	2.5	112
42	Extraction of polyphenols from grape skins and defatted grape seeds using subcritical water: Experiments and modeling. Food and Bioproducts Processing, 2015, 94, 29-38.	1.8	109
43	Preliminary experimental study on biofuel production by deoxygenation of Jatropha oil. Fuel Processing Technology, 2015, 137, 31-37.	3.7	32
44	Catalytic pyrolysis of vegetable oils to biofuels: Catalyst functionalities and the role of ketonization on the oxygenate paths. Fuel Processing Technology, 2015, 140, 119-124.	3.7	46
45	Effect of UV radiation or titanium dioxide on polyphenol and lipid contents of Arthrospira (Spirulina) platensis. Algal Research, 2015, 12, 308-315.	2.4	29
46	Chitosan/dextran multilayer microcapsules for polyphenol co-delivery. Materials Science and Engineering C, 2015, 46, 374-380.	3.8	43
47	TNFα-induced endothelial activation is counteracted by polyphenol extract from UV-stressed cyanobacterium Arthrospira platensis. Medicinal Chemistry Research, 2015, 24, 275-282.	1.1	8
48	Production of a novel fermented milk fortified with natural antioxidants and its analysis by NIR spectroscopy. LWT - Food Science and Technology, 2015, 62, 376-383.	2.5	58
49	Influence of TiO ₂ Nanoparticles on Growth and Phenolic Compounds Production in Photosynthetic Microorganisms. Scientific World Journal, The, 2014, 2014, 1-9.	0.8	38
50	Optimisation of phenolics recovery fromVitex agnus-castusLinn. leaves by high-pressure and temperature extraction. Natural Product Research, 2014, 28, 67-69.	1.0	6
51	A non-conventional method to extract D-limonene from waste lemon peels and comparison with traditional Soxhlet extraction. Separation and Purification Technology, 2014, 137, 13-20.	3.9	84
52	Production of <i>Chlorella vulgaris</i> as a source of essential fatty acids in a tubular photobioreactor continuously fed with air enriched with CO ₂ at different concentrations. Biotechnology Progress, 2014, 30, 916-922.	1.3	59
53	Combined effect of starter culture and temperature on phenolic compounds during fermentation of Taggiasca black olives. Food Chemistry, 2013, 138, 2043-2049.	4.2	49
54	Exploitation of Polyphenolic Extracts from Grape Marc as Natural Antioxidants by Encapsulation in Lipid-Based Nanodelivery Systems. Food and Bioprocess Technology, 2013, 6, 2609-2620.	2.6	46

#	Article	IF	CITATIONS
55	Cultivation of Chlorella vulgaris in tubular photobioreactors: A lipid source for biodiesel production. Biochemical Engineering Journal, 2013, 81, 120-125.	1.8	38
56	Catalytic conversion of ethyl acetate and acetic acid on alumina as models of vegetable oils conversion to biofuels. Chemical Engineering Journal, 2013, 215-216, 838-848.	6.6	38
57	Inactivation of Escherichia coli on anatase and rutile nanoparticles using UV and fluorescent light. Materials Research Bulletin, 2013, 48, 2095-2101.	2.7	37
58	Influence of fructooligosaccharides on the fermentation profile and viable counts in a symbiotic low fat milk. Brazilian Journal of Microbiology, 2013, 44, 431-434.	0.8	5
59	Antioxidant activity and biological evaluation of olive pomace extract. Natural Product Research, 2012, 26, 2280-2290.	1.0	27
60	Extraction of phenolic compounds from Vitex agnus-castus L Food and Bioproducts Processing, 2012, 90, 748-754.	1.8	29
61	Effects of polyphenol extract from olive pomace on anoxia-induced endothelial dysfunction. Microvascular Research, 2012, 83, 281-289.	1.1	49
62	Medium-temperature conversion of biomass and wastes into liquid products, a review. Renewable and Sustainable Energy Reviews, 2012, 16, 6455-6475.	8.2	54
63	Highâ€pressure highâ€ŧemperature extraction of phenolic compounds from grape skins. International Journal of Food Science and Technology, 2012, 47, 399-405.	1.3	54
64	ANTIOXIDANTS FROM WINEMAKING WASTES: A STUDY ON EXTRACTION PARAMETERS USING RESPONSE SURFACE METHODOLOGY. Journal of Food Biochemistry, 2012, 36, 28-37.	1.2	40
65	Phenolics extraction from Agave americana (L.) leaves using high-temperature, high-pressure reactor. Food and Bioproducts Processing, 2012, 90, 17-21.	1.8	59
66	Recovery of phenolic compounds from grape seeds: effect of extraction time and solid–liquid ratio. Natural Product Research, 2011, 25, 1751-1761.	1.0	29
67	Valorization of olive oil solid waste using high pressure–high temperature reactor. Food Chemistry, 2011, 128, 704-710.	4.2	107
68	Valorisation of Olive Oil Solid Wastes: Valuable Compounds Recovery Using High Pressure- High Temperature. Journal of Biotechnology, 2010, 150, 332-332.	1.9	8
69	Extraction of phenolics from Vitis vinifera wastes using non-conventional techniques. Journal of Food Engineering, 2010, 100, 50-55.	2.7	186
70	Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, 2009, 48, 1146-1151.	1.8	1,070