Kamel El Omari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8859447/publications.pdf

Version: 2024-02-01

279701 330025 1,681 37 23 37 citations h-index g-index papers 39 39 39 2778 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Structure and assembly of the S-layer in C. difficile. Nature Communications, 2022, 13, 970.	5.8	30
2	Functional metagenomic screening identifies an unexpected \hat{l}^2 -glucuronidase. Nature Chemical Biology, 2022, 18, 1096-1103.	3.9	16
3	Atypical Porcine Pestiviruses: Relationships and Conserved Structural Features. Viruses, 2021, 13, 760.	1.5	5
4	Phosphorus and sulfur SAD phasing of the nucleic acid-bound DNA-binding domain of interferon regulatory factor 4. Acta Crystallographica Section F, Structural Biology Communications, 2021, 77, 202-207.	0.4	2
5	Hedgehog-Interacting Protein is a multimodal antagonist of Hedgehog signalling. Nature Communications, 2021, 12, 7171.	5.8	16
6	Native de novo structural determinations of non-canonical nucleic acid motifs by X-ray crystallography at long wavelengths. Nucleic Acids Research, 2020, 48, 9886-9898.	6.5	13
7	Experimental phasing with vanadium and application to nucleotide-binding membrane proteins. IUCrJ, 2020, 7, 1092-1101.	1.0	3
8	The morphogen Sonic hedgehog inhibits its receptor Patched by a pincer grasp mechanism. Nature Chemical Biology, 2019, 15, 975-982.	3.9	52
9	Importance of potassium ions for ribosome structure and function revealed by long-wavelength X-ray diffraction. Nature Communications, 2019, 10, 2519.	5.8	124
10	Multiple liquid crystalline geometries of highly compacted nucleic acid in a dsRNA virus. Nature, 2019, 570, 252-256.	13.7	59
11	The structure of a prokaryotic viral envelope protein expands the landscape of membrane fusion proteins. Nature Communications, 2019, 10, 846.	5.8	37
12	Identifying dynamic, partially occupied residues using anomalous scattering. Acta Crystallographica Section D: Structural Biology, 2019, 75, 1084-1095.	1,1	5
13	Anomalous X-ray diffraction studies of ion transport in K+ channels. Nature Communications, 2018, 9, 4540.	5.8	42
14	The conserved protein Seb1 drives transcription termination by binding RNA polymerase II and nascent RNA. Nature Communications, 2017, 8, 14861.	5.8	48
15	Double-stranded RNA virus outer shell assembly by bona fide domain-swapping. Nature Communications, 2017, 8, 14814.	5.8	35
16	Structural basis for antibacterial peptide selfâ€immunity by the bacterial ABC transporter McjD. EMBO Journal, 2017, 36, 3062-3079.	3.5	64
17	The crystal structure of human dopamine \hat{l}^2 -hydroxylase at 2.9 \tilde{A} resolution. Science Advances, 2016, 2, e1500980.	4.7	80
18	Influenza Polymerase Can Adopt an Alternative Configuration Involving a Radical Repacking of PB2 Domains. Molecular Cell, 2016, 61, 125-137.	4.5	123

#	Article	IF	Citations
19	Crystal Structure of the Herpesvirus Nuclear Egress Complex Provides Insights into Inner Nuclear Membrane Remodeling. Cell Reports, 2015, 13, 2645-2652.	2.9	80
20	Unexpected features and mechanism of heterodimer formation of a herpesvirus nuclear egress complex. EMBO Journal, 2015, 34, 2937-2952.	3. 5	69
21	Crystal structure of the RNA-dependent RNA polymerase from influenza C virus. Nature, 2015, 527, 114-117.	13.7	145
22	Pushing the limits of sulfur SAD phasing: <i>de novo</i> structure solution of the N-terminal domain of the ectodomain of HCV E1. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 2197-2203.	2.5	33
23	Unexpected structure for the N-terminal domain of hepatitis C virus envelope glycoprotein E1. Nature Communications, 2014, 5, 4874.	5. 8	72
24	Structure of a Pestivirus Envelope Glycoprotein E2 Clarifies Its Role in Cell Entry. Cell Reports, 2013, 3, 30-35.	2.9	124
25	Structural Basis for LMO2-Driven Recruitment of the SCL:E47bHLH Heterodimer to Hematopoietic-Specific Transcriptional Targets. Cell Reports, 2013, 4, 135-147.	2.9	56
26	Plate Tectonics of Virus Shell Assembly and Reorganization in Phage $\hat{l} \mid 8$, a Distant Relative of Mammalian Reoviruses. Structure, 2013, 21, 1384-1395.	1.6	45
27	Tracking in atomic detail the functional specializations in viral RecA helicases that occur during evolution. Nucleic Acids Research, 2013, 41, 9396-9410.	6. 5	23
28	Structure of the DNAâ€bound Tâ€box domain of human TBX1, a transcription factor associated with the DiGeorge syndrome. Proteins: Structure, Function and Bioinformatics, 2012, 80, 655-660.	1.5	21
29	Structure of the leukemia oncogene LMO2: implications for the assembly of a hematopoietic transcription factor complex. Blood, 2011, 117, 2146-2156.	0.6	59
30	Purification, crystallization and preliminary X-ray analysis of a fusion of the LIM domains of LMO2 and the LID domain of Ldb1. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1466-1469.	0.7	4
31	The design and development of drugs acting against the smallpox virus. Expert Opinion on Drug Discovery, 2007, 2, 1263-1272.	2.5	1
32	Structural basis for non-competitive product inhibition in human thymidine phosphorylase: implications for drug design. Biochemical Journal, 2006, 399, 199-204.	1.7	38
33	Structure of Staphylococcus aureusguanylate monophosphate kinase. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 949-953.	0.7	21
34	Structure of vaccinia virus thymidine kinase in complex with dTTP: insights for drug design. BMC Structural Biology, 2006, 6, 22.	2.3	31
35	Mutations Distal to the Substrate Site Can Affect Varicella Zoster Virus Thymidine Kinase Activity: Implications for Drug Design. Molecular Pharmacology, 2006, 69, 1891-1896.	1.0	16
36	Molecular Architecture and Ligand Recognition Determinants for T4 RNA Ligase. Journal of Biological Chemistry, 2006, 281, 1573-1579.	1.6	61

3

#	Article	IF	CITATIONS
37	Crystal Structure of CC3 (TIP30). Journal of Biological Chemistry, 2005, 280, 18229-18236.	1.6	27